题目
单项选择题
Question at position 12 Solve ∫x2e2x+1dx\int x^2 e^{2x+1} \, dx.e2x+1(x2−x+12)+Ce^{2x+1}\left( x^2 - x + \frac{1}{2} \right) + Cxe2x+12−e2x+14+C\frac{x e^{2x+1}}{2} - \frac{e^{2x+1}}{4}+ Ce2x+12(x2−x)+C\frac{e^{2x+1}}{2} \left( x^2 - x \right) + Ce2x+12(x2−x+12)+C\frac{e^{2x+1}}{2} \left( x^2 - x + \frac{1}{2} \right) + C
选项
A.𝑒
2
𝑥
+
1
(
𝑥
2
−
𝑥
+
1
2
)
+
𝐶
B.𝑥
𝑒
2
𝑥
+
1
2
−
𝑒
2
𝑥
+
1
4
+
𝐶
C.𝑒
2
𝑥
+
1
2
(
𝑥
2
−
𝑥
)
+
𝐶
D.𝑒
2
𝑥
+
1
2
(
𝑥
2
−
𝑥
+
1
2
)
+
𝐶
查看解析
标准答案
Please login to view
思路分析
To tackle the integral ∫ x^2 e^{2x+1} dx, I first note that e^{2x+1} = e · e^{2x}, so the integral is e · ∫ x^2 e^{2x} dx. The standard approach for ∫ x^n e^{ax} dx yields a polynomial in x multiplied by e^{ax}; here with n = 2 and a = 2, we expect a result of the form e^{2x} times a quadratic in x, up to a constant factor, and then multiplied by the extra e from e^{2x+1}.
Option 1: e^{2x+1} · ( x^2 − x + 1/2 ) + C
- This expression corresponds to a polynomial with c......Login to view full explanation登录即可查看完整答案
我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。
类似问题
(a) Integrate the following (i) (Hint: You may substitute , and adopt integration by parts) [2 marks](ii) (Hint: You may let , , use and adopt integration by parts)[2 marks] (b) Differentiate [3 marks][Fill in the blank]
Compute [math: ∫01(2x2+3x−2)ex dx]\displaystyle \int _0^1{(2x^2+3x-2)e^x dx}.
Question at position 9 ∫033xex3dx=\int_0^33xe^{\frac{x}{3}}dx=903276
Question textThe indefinite integral\displaystyle \int e^{-x}\sin(x)\,dxcan be written in the form\dfrac{\cos(x)}{Ae^x} + \dfrac{\sin(x)}{Be^x} + Cwhere A and B are integers, and C is a constant of integration.Use integration by parts (twice) to find A and B.Fill in the spaces with the correct responses.A= Answer 1 Question 27[input]B= Answer 2 Question 27[input]
更多留学生实用工具
希望你的学习变得更简单
加入我们,立即解锁 海量真题 与 独家解析,让复习快人一步!