题目
单项选择题
Integration by parts [math: ∫f′(x)g(x)dx=f(x)g(x)−∫f(x)g′(x)dx]\int f'(x) g(x) \, dx = f(x) g(x) - \int f(x) g'(x) \, dx is the partial integral counterpart to which of the following rules?
选项
A.a. Product Rule: [math: (f(x)g(x))′=f′(x)g(x)+f(x)g′(x)](f(x)g(x))' = f'(x)g(x) + f(x)g'(x)
B.b. Addition Rule: [math: (f(x)+g(x))′=f′(x)+g′(x)](f(x) + g(x))' = f'(x) + g'(x)
C.c. Quotient Rule:[math: (f(x)g(x))′=f′(x)g(x)−f(x)g′(x)[g(x)]2] \left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}
D.d. Chain Rule: [math: (f(g(x)))′=f′(g(x))⋅g′(x)](f(g(x)))' = f'(g(x)) \cdot g'(x)
E.e. Power Rule: [math: (f(x)g(x))′=f(x)g(x)(g′(x)ln(f(x))+g(x)f′(x)f(x))](f(x)^{g(x)})' = f(x)^{g(x)} \left( g'(x) \ln(f(x)) + \frac{g(x) f'(x)}{f(x)} \right)
查看解析
标准答案
Please login to view
思路分析
The question asks: Integration by parts, expressed as ∫ f'(x) g(x) dx = f(x) g(x) − ∫ f(x) g'(x) dx, is the partial integral counterpart to which rule?
Option a: Product Rule: (f(x)g(x))' = f'(x)g(x) + f(x)g'(x). This corresponds to how the derivative of a product expands, and integration by parts is essentially derived from rearranging this product rule. Thus, t......Login to view full explanation登录即可查看完整答案
我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。
类似问题
(a) Integrate the following (i) (Hint: You may substitute , and adopt integration by parts) [2 marks](ii) (Hint: You may let , , use and adopt integration by parts)[2 marks] (b) Differentiate [3 marks][Fill in the blank]
Compute [math: ∫01(2x2+3x−2)ex dx]\displaystyle \int _0^1{(2x^2+3x-2)e^x dx}.
Question at position 12 Solve ∫x2e2x+1dx\int x^2 e^{2x+1} \, dx.e2x+1(x2−x+12)+Ce^{2x+1}\left( x^2 - x + \frac{1}{2} \right) + Cxe2x+12−e2x+14+C\frac{x e^{2x+1}}{2} - \frac{e^{2x+1}}{4}+ Ce2x+12(x2−x)+C\frac{e^{2x+1}}{2} \left( x^2 - x \right) + Ce2x+12(x2−x+12)+C\frac{e^{2x+1}}{2} \left( x^2 - x + \frac{1}{2} \right) + C
Question at position 9 ∫033xex3dx=\int_0^33xe^{\frac{x}{3}}dx=903276
更多留学生实用工具
希望你的学习变得更简单
加入我们,立即解锁 海量真题 与 独家解析,让复习快人一步!