题目
题目

MTH1030 -1035 - S1 2025 MTH1030/35 Week 11 lesson quiz: Differential equations

单项选择题

Integration by parts \[\int f'(x) g(x) \, dx = f(x) g(x) - \int f(x) g'(x) \, dx \] is the partial integral counterpart to which of the following rules?

选项
A.a. Product Rule: \((f(x)g(x))' = f'(x)g(x) + f(x)g'(x)\)
B.b. Addition Rule: \((f(x) + g(x))' = f'(x) + g'(x)\)
C.c. Quotient Rule:\( \left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2} \)
D.d. Chain Rule: \((f(g(x)))' = f'(g(x)) \cdot g'(x)\)
E.e. Power Rule: \((f(x)^{g(x)})' = f(x)^{g(x)} \left( g'(x) \ln(f(x)) + \frac{g(x) f'(x)}{f(x)} \right) \)
查看解析

查看解析

标准答案
Please login to view
思路分析
Question restatement: The partial integral counterpart to the formula ∫ f'(x) g(x) dx = f(x) g(x) − ∫ f(x) g'(x) dx is being asked. Option a: Product Rule: (f(x)g(x))' = f'(x)g(x) + f(x)g'(x). This rule describes how to differentiate a product of two functions and yields the sum of two terms, which directly leads to the integration-by-parts formula when you integrate f'(x)g(x) and rearrange under the integr......Login to view full explanation

登录即可查看完整答案

我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。

类似问题

更多留学生实用工具

加入我们,立即解锁 海量真题独家解析,让复习快人一步!