题目
MTH1030 -1035 - S1 2025 MTH1030/35 Week 11 lesson quiz: Differential equations
单项选择题
Integration by parts \[\int f'(x) g(x) \, dx = f(x) g(x) - \int f(x) g'(x) \, dx \] is the partial integral counterpart to which of the following rules?
选项
A.a. Product Rule: \((f(x)g(x))' = f'(x)g(x) + f(x)g'(x)\)
B.b. Addition Rule: \((f(x) + g(x))' = f'(x) + g'(x)\)
C.c. Quotient Rule:\( \left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2} \)
D.d. Chain Rule: \((f(g(x)))' = f'(g(x)) \cdot g'(x)\)
E.e. Power Rule: \((f(x)^{g(x)})' = f(x)^{g(x)} \left( g'(x) \ln(f(x)) + \frac{g(x) f'(x)}{f(x)} \right) \)
查看解析
标准答案
Please login to view
思路分析
Question restatement: The partial integral counterpart to the formula ∫ f'(x) g(x) dx = f(x) g(x) − ∫ f(x) g'(x) dx is being asked.
Option a: Product Rule: (f(x)g(x))' = f'(x)g(x) + f(x)g'(x). This rule describes how to differentiate a product of two functions and yields the sum of two terms, which directly leads to the integration-by-parts formula when you integrate f'(x)g(x) and rearrange under the integr......Login to view full explanation登录即可查看完整答案
我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。
类似问题
(a) Integrate the following (i) (Hint: You may substitute , and adopt integration by parts) [2 marks](ii) (Hint: You may let , , use and adopt integration by parts)[2 marks] (b) Differentiate [3 marks][Fill in the blank]
Compute [math: ∫01(2x2+3x−2)ex dx]\displaystyle \int _0^1{(2x^2+3x-2)e^x dx}.
Question at position 12 Solve ∫x2e2x+1dx\int x^2 e^{2x+1} \, dx.e2x+1(x2−x+12)+Ce^{2x+1}\left( x^2 - x + \frac{1}{2} \right) + Cxe2x+12−e2x+14+C\frac{x e^{2x+1}}{2} - \frac{e^{2x+1}}{4}+ Ce2x+12(x2−x)+C\frac{e^{2x+1}}{2} \left( x^2 - x \right) + Ce2x+12(x2−x+12)+C\frac{e^{2x+1}}{2} \left( x^2 - x + \frac{1}{2} \right) + C
Question at position 9 ∫033xex3dx=\int_0^33xe^{\frac{x}{3}}dx=903276
更多留学生实用工具
希望你的学习变得更简单
加入我们,立即解锁 海量真题 与 独家解析,让复习快人一步!