题目
单项选择题
Use of integration by parts \displaystyle\int f(x)\,g'(x)\,dx=f(x)\,g(x) - \displaystyle \int f'(x)\,g(x)\,dxrequires a suitable choice for f(x) and g'(x).Choose from the options below, the choice of f(x) and g'(x) that will NOT help find the corresponding indefinite integral.
查看解析
标准答案
Please login to view
思路分析
The question asks to identify which choice of f(x) and g'(x) will NOT help in applying integration by parts to the integral ∫ (ln(x))^2 / x^3 dx.
In integration by parts, we want to split the integrand into f(x) g'(x) so that the derivative f'(x) is simpler (or at least reduces a problematic part) and the integral of g'(x)......Login to view full explanation登录即可查看完整答案
我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。
类似问题
(a) Integrate the following (i) (Hint: You may substitute , and adopt integration by parts) [2 marks](ii) (Hint: You may let , , use and adopt integration by parts)[2 marks] (b) Differentiate [3 marks][Fill in the blank]
Compute [math: ∫01(2x2+3x−2)ex dx]\displaystyle \int _0^1{(2x^2+3x-2)e^x dx}.
Question at position 12 Solve ∫x2e2x+1dx\int x^2 e^{2x+1} \, dx.e2x+1(x2−x+12)+Ce^{2x+1}\left( x^2 - x + \frac{1}{2} \right) + Cxe2x+12−e2x+14+C\frac{x e^{2x+1}}{2} - \frac{e^{2x+1}}{4}+ Ce2x+12(x2−x)+C\frac{e^{2x+1}}{2} \left( x^2 - x \right) + Ce2x+12(x2−x+12)+C\frac{e^{2x+1}}{2} \left( x^2 - x + \frac{1}{2} \right) + C
Question at position 9 ∫033xex3dx=\int_0^33xe^{\frac{x}{3}}dx=903276
更多留学生实用工具
希望你的学习变得更简单
加入我们,立即解锁 海量真题 与 独家解析,让复习快人一步!