题目
多项填空题
(a) Integrate the following (i) (Hint: You may substitute , and adopt integration by parts) [2 marks](ii) (Hint: You may let , , use and adopt integration by parts)[2 marks] (b) Differentiate [3 marks][Fill in the blank]

查看解析
标准答案
Please login to view
思路分析
The question has two parts (a) and (b), with blank spaces to fill. The provided answers are the intended completions for each blank.
Part (a) (i): Evaluate ∫ x e^x dx. A standard approach is integration by parts or recognizing a derivative pattern. If we set up integration by parts with u = x and dv = e^x dx, then du = dx and v = e^x, giving ∫ x e^x dx = x e^x − ∫ e^x dx = x e^x − e^x + C = (x − 1) e^x + C. The given fill [(x - 1)e^{x}] matches exactly this result, so it is correct.
Part (a) (ii)......Login to view full explanation登录即可查看完整答案
我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。
类似问题
Compute [math: ∫01(2x2+3x−2)ex dx]\displaystyle \int _0^1{(2x^2+3x-2)e^x dx}.
Question at position 12 Solve ∫x2e2x+1dx\int x^2 e^{2x+1} \, dx.e2x+1(x2−x+12)+Ce^{2x+1}\left( x^2 - x + \frac{1}{2} \right) + Cxe2x+12−e2x+14+C\frac{x e^{2x+1}}{2} - \frac{e^{2x+1}}{4}+ Ce2x+12(x2−x)+C\frac{e^{2x+1}}{2} \left( x^2 - x \right) + Ce2x+12(x2−x+12)+C\frac{e^{2x+1}}{2} \left( x^2 - x + \frac{1}{2} \right) + C
Question at position 9 ∫033xex3dx=\int_0^33xe^{\frac{x}{3}}dx=903276
Question textThe indefinite integral\displaystyle \int e^{-x}\sin(x)\,dxcan be written in the form\dfrac{\cos(x)}{Ae^x} + \dfrac{\sin(x)}{Be^x} + Cwhere A and B are integers, and C is a constant of integration.Use integration by parts (twice) to find A and B.Fill in the spaces with the correct responses.A= Answer 1 Question 27[input]B= Answer 2 Question 27[input]
更多留学生实用工具
希望你的学习变得更简单
加入我们,立即解锁 海量真题 与 独家解析,让复习快人一步!