题目
题目

MAT137Y1 LEC 20249: Calculus with Proofs (all lecture sections) Pre-Class Quiz 45(9.4, 9.5 and 9.6)

数值题

Let  𝑓  be a differentiable function with domain  𝑅  . We define  𝐹 ( 𝑥 ) = ∫ 0 𝑥 𝑓 ( 𝑡 ) 𝑑 𝑡 . Given the following table: x f(x) F(x) 1 4 3 2 1 4 3 2 3 4 3 1 5 4 2   Compute ∫ 3 5 ( 𝑥 − 2 ) 𝑓 ′ ( 𝑥 ) 𝑑 𝑥  . Hint: use integration by parts and FTC part 2.  Enter your answer in decimal form. Round to two decimal places if needed (e.g. enter 0.1 as 0.1, enter 0.2345 as 0.23 or 0.24).

查看解析

查看解析

标准答案
Please login to view
思路分析
We need to evaluate the integral ∫ from 3 to 5 of (x−2) f′(x) dx. Start by applying integration by parts. Let u = x−2, dv = f′(x) dx. Then du = dx and v = f(x). The integration by p......Login to view full explanation

登录即可查看完整答案

我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。

类似问题

更多留学生实用工具

加入我们,立即解锁 海量真题独家解析,让复习快人一步!