题目
题目

MTH1030 -1035 - S1 2025 MTH1030/35 Week 11 lesson quiz: Differential equations

多项选择题

Which of the following five differential equations cannot be solved using an integrating factor? (More than one correct answer.)

选项
A.a. [math: y′+y=x2]y' + \sqrt{y} = x^2
B.b. [math: y″+y=sin⁡(x)]y'' + y = \sin(x)
C.c. [math: y′+2y=cos⁡(x)]y' + 2y = \cos(x)
D.d. [math: y′+yx=ln⁡(x)]y' + \frac{{y}}{{x}} = \ln(x)
E.e. [math: y′+xy=x2]y' + xy = x^2
查看解析

查看解析

标准答案
Please login to view
思路分析
To determine whether an integrating factor can be used, we first recall that the standard integrating factor technique applies to first-order linear ODEs of the form y' + p(x) y = q(x). Option a: y' + sqrt(y) = x^2. This is not linear in y because of the sqrt(y) term. The integrating factor method hinges on linearity in y, so this equation cannot be solved by the integrating factor approach in its usual form. In fact, it is a nonlinear first-order equation, which generally requires other methods (e.g., substitutio......Login to view full explanation

登录即可查看完整答案

我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。

更多留学生实用工具

加入我们,立即解锁 海量真题独家解析,让复习快人一步!