题目
单项选择题
Question at position 7 ∫(x3−1x4+2)dx=\int\left(x^3-\frac{1}{x^4}+2\right)dx=x44−3x3+2x+C\frac{x^4}{4}-\frac{3}{x^3}+2x+Cx44+13x3+2x+C\frac{x^4}{4}+\frac{1}{3x^3}+2x+C3x2+4x−5+C3x^2+4x^{-5}+C3x2−14x3+C3x^2-\frac{1}{4x^3}+Cx44−13x3+2x+C\frac{x^4}{4}-\frac{1}{3x^3}+2x+C
选项
A.𝑥
4
4
−
3
𝑥
3
+
2
𝑥
+
𝐶
B.𝑥
4
4
+
1
3
𝑥
3
+
2
𝑥
+
𝐶
C.3
𝑥
2
+
4
𝑥
−
5
+
𝐶
D.3
𝑥
2
−
1
4
𝑥
3
+
𝐶
E.𝑥
4
4
−
1
3
𝑥
3
+
2
𝑥
+
𝐶
查看解析
标准答案
Please login to view
思路分析
Let's break down the given integral step by step and then evaluate each proposed antiderivative.
Option 1: x^(4)/4 − 3x^3 + 2x + C. This expression would have an x^3 term with a coefficient of −3, which does not align with the original integrand components. The integral of x^3 is x^4/4, but there is no reason to introduce a −3x^3 term from integrating x^3 or −x^4, so this option adds......Login to view full explanation登录即可查看完整答案
我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。
类似问题
Integrate ∫ ( 2 𝑥 − 1 ) 4 𝑑 𝑥
Question at position 11 find ∫23−xdx\int2^{3-x}dx−e3−xln(2)+C- \frac{e^{3 - x}}{\ln(2)} + C 23−xln(2)+C \frac{2^{3 - x}}{\ln(2)} + C 23−xln(2)+C\frac{2^{3 - x}}{\ln(2)} + C−23−xln(2)+C- \frac{2^{3 - x}}{\ln(2)} + C
Question at position 3 ∫x2+4x−3x−1dx=\int\frac{x^2+4x-3}{x-1}dx=x22+5x+2ln|x−1|+C\frac{x^2}{2}+5x+2\ln\left|x-1\right|+C7x22−2x+C\frac{7x^2}{2}-2x+Cx22+6x+3ln|x−1|+C\frac{x^2}{2}+6x+3\ln\left|x-1\right|+C12ln|x−1|+C\frac{1}{2}\ln\left|x-1\right|+C13ln|x−1|+C\frac{1}{3}\ln\left|x-1\right|+C
Question at position 4 ∫2x−13dx=\int\frac{2x-1}{3}dx=(2x−1)26+C\frac{\left(2x-1\right)^2}{6}+C13(x2−x)+C\frac{1}{3}\left(x^2-x\right)+C12+C\frac{1}{2}+Cx2−x3x+C\frac{x^2-x}{3x}+C23+C\frac{2}{3}+C
更多留学生实用工具
希望你的学习变得更简单
加入我们,立即解锁 海量真题 与 独家解析,让复习快人一步!