题目
题目
单项选择题

Question at position 7 ∫(x3−1x4+2)dx=\int\left(x^3-\frac{1}{x^4}+2\right)dx=x44−13x3+2x+C\frac{x^4}{4}-\frac{1}{3x^3}+2x+Cx44+13x3+2x+C\frac{x^4}{4}+\frac{1}{3x^3}+2x+Cx44−3x3+2x+C\frac{x^4}{4}-\frac{3}{x^3}+2x+C3x2+4x−5+C3x^2+4x^{-5}+C3x2−14x3+C3x^2-\frac{1}{4x^3}+C

选项
A.𝑥 4 4 − 1 3 𝑥 3 + 2 𝑥 + 𝐶
B.𝑥 4 4 + 1 3 𝑥 3 + 2 𝑥 + 𝐶
C.𝑥 4 4 − 3 𝑥 3 + 2 𝑥 + 𝐶
D.3 𝑥 2 + 4 𝑥 − 5 + 𝐶
E.3 𝑥 2 − 1 4 𝑥 3 + 𝐶
查看解析

查看解析

标准答案
Please login to view
思路分析
The problem asks us to compute the indefinite integral of the function x^3 − 1/x^4 + 2 with respect to x, and then choose the matching option. Option 1 appears as: x^4/4 − 1/(3 x^3) + 2x + C. Here, integrating x^3 gives x^4/4, which is correct, but the second term should be +1/(3 x^3) (not −1/(3 x^3)); also the sign for the 1/x^4 term is incorrect since ∫(−x^−4)dx = +1/(3 x^3). Therefore this option misrepresents both the second term and the sign of that term, so it is not correct. ......Login to view full explanation

登录即可查看完整答案

我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。

类似问题

更多留学生实用工具

加入我们,立即解锁 海量真题独家解析,让复习快人一步!