题目
题目

MAT137Y1 LEC 20249: Calculus with Proofs (all lecture sections) Pre-Class Quiz 56 (12.9,12.10)

多项选择题

Let 𝑓 , 𝑔   be positive, continuous functions with domain 𝑅   . Let 𝐿 = lim 𝑥 → ∞ 𝑓 ( 𝑥 ) 𝑔 ( 𝑥 ) . Assume ∫ 1 ∞ 𝑓 ( 𝑥 ) 𝑑 𝑥  is convergent. Which of the following statements must be true? Select all the correct answers.

选项
A.IF 𝐿   DNE, THEN ∫ 1 ∞ 𝑔 ( 𝑥 ) 𝑑 𝑥  is not convergent.
B.IF 𝐿   exists, THEN ∫ 1 ∞ 𝑔 ( 𝑥 ) 𝑑 𝑥    is convergent.
C.IF 𝐿 = 3  , THEN ∫ 1 ∞ 𝑔 ( 𝑥 ) 𝑑 𝑥  is convergent.
D.IF 𝐿   is ∞   , THEN ∫ 1 ∞ 𝑔 ( 𝑥 ) 𝑑 𝑥  is convergent.
查看解析

查看解析

标准答案
Please login to view
思路分析
We start by parsing the given setup: f and g are positive, continuous on R, and L = lim_{x→∞} f(x)/g(x). It is also given that ∫_1^∞ f(x) dx converges. We will evaluate each statement in light of these facts and general limit comparison ideas. Option 1: IF L DNE, THEN ∫_1^∞ g(x) dx is not convergent. This claim tries to link the nonexistence of the limit of f/g to the divergence of the integral of g. However, the absence of a limit does not force divergence of ∫ g. It is entirely possible ......Login to view full explanation

登录即可查看完整答案

我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。

更多留学生实用工具

加入我们,立即解锁 海量真题独家解析,让复习快人一步!