题目
题目

MAT137Y1 LEC 20249: Calculus with Proofs (all lecture sections) Pre-Class Quiz 55(12.7,12.8)

多项选择题

Let 𝑓   be a positive, continuous function with domain 𝑅 . Assume ∫ 1 ∞ 𝑓 ( 𝑥 ) 𝑑 𝑥   is divergent. Which of the following improper integrals must also be divergent? Select all the correct answers.

选项
A.∫ 0 ∞ 𝑓 ( 𝑥 ) 𝑑 𝑥
B.∫ 1 ∞ 𝑓 ( 𝑥 ) 1 + 𝑥 𝑑 𝑥
C.∫ 1 ∞ 𝑓 ( 𝑥 ) 2 𝑑 𝑥
D.∫ 1 ∞ 𝑓 ( 𝑥 ) 1 + sin 2 ⁡ 𝑥 𝑑 𝑥
E.∫ 1 ∞ 𝑓 2 ( 𝑥 ) 𝑑 𝑥
查看解析

查看解析

标准答案
Please login to view
思路分析
Question restatement and options: - Given a positive, continuous function f with domain R, and knowing that ∫ from 1 to ∞ of f(x) dx diverges, determine which of the following improper integrals must also be divergent. Select all that apply. Options: 1) ∫_0^∞ f(x) dx 2) ∫_1^∞ f(x) /(1+x) dx 3) ∫_1^∞ f(x)/(1+sin^2 x) dx 4) ∫_1^∞ f(x)^(1+sin^2 x) dx 5) ∫_1^∞ f(x)^2 dx Option-by-option analysis: Option 1: ∫_0^∞ f(x) dx Since f is positive and continuous on R, the integral over [0,1] is finite (a continuous function on a compact interval has a finite integral). The div......Login to view full explanation

登录即可查看完整答案

我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。

更多留学生实用工具

加入我们,立即解锁 海量真题独家解析,让复习快人一步!