题目
题目

MAT137Y1 LEC 20249: Calculus with Proofs (all lecture sections) Pre-Class Quiz 54 (12.1-12.6)

单项选择题

Consider an improper integral ∫ 1 ∞ 1 𝑥 2 𝑎 − 1 𝑑 𝑥 . Which condition should   𝑎  satisfy to make this improper integral convergent? Select the best answer (which includes as many values as possible).  

选项
A.𝑎 > 1
B.| 𝑎 | > 1
C.𝑎 > 0.5
D.𝑎 < 1
E.0 < 𝑎 < 1
F.𝑎 ≥ 1
查看解析

查看解析

标准答案
Please login to view
思路分析
We are given the improper integral ∫ from 1 to ∞ of 1/x^(2a−1) dx, and we need to determine for which values of a this integral converges. Option 1: a > 1 — This matches the standard convergence criterion for integrals of the form ∫_1^∞ x^(-p) dx, which converges if and only if p > 1. Here p = 2a − 1. Requiring 2a − 1 > 1 yields 2a > ......Login to view full explanation

登录即可查看完整答案

我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。

更多留学生实用工具

加入我们,立即解锁 海量真题独家解析,让复习快人一步!