题目
题目

25S-STATS-102B-LEC-3 S25 Midterm Exam- Requires Respondus LockDown Browser

单项选择题

Consider a bi-variate quadratic function 𝑔 ( 𝑤 ) = 𝑤 𝑇 𝐶 𝑤 , where 𝑤 = [ 𝑤 1 𝑤 2 ] , and 𝐶 = [ 0.01 0 0 12 ] .  Using RMSprop, please provide the direction vector 𝑤 𝑘 given that 𝑤 𝑘 − 1 = [ 1 1 ] . Assume the step-length parameter is 0.1, the turning parameter is 0.9, and all the exponential averages used in RMSprop at 𝑘 − 2  are 0.

选项
A.𝑤 𝑘 = [ 0.999 0.76 ]
B.None of these options are correct.
C.𝑤 𝑘 = [ 0.998 − 1.4 ]
D.𝑤 𝑘 = [ 0.994 − 6.590 ]
E.𝑤 𝑘 = [ 0.610 − 1.915 ]
查看解析

查看解析

标准答案
Please login to view
思路分析
We start by restating the problem setup and the quantities we will use to compute the RMSprop update. - The bi-variate quadratic function is g(w) = w^T C w with w = [w1, w2]^T and C = [[0.01, 0], [0, 12]]. Since C is symmetric, the gradient is ∇g(w) = (C + C^T) w = 2 C w. - With w_{k-1} = [1, 1]^T, we compute the gradient at k-1: ∇g(w_{k-1}) = 2 C w_{k-1} = 2 * [[0.01, 0], [0, 12]] * [1, 1]^T = [0.02, 24]^T. - The RMSprop update uses v_t which accumulates squared gradients: v_t = β v_{t-1} + (1 − β) g_t^2 (elementwise), and w_t = w_{t-1} − α g_t / sqrt(v_t). - Given that at k−2 the exponential averages are 0, we first compute v_{k-1} using g_{k-1} = ∇g(w_{k-1}) = [0.02, 24]. With β = 0.9 and α = 0.1: v_{k-1} = 0.9 * 0 + 0.1 * (g_{k-1} ∘ g_{k-1}) = ......Login to view full explanation

登录即可查看完整答案

我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。

更多留学生实用工具

加入我们,立即解锁 海量真题独家解析,让复习快人一步!