é¢˜ē›®
é¢˜ē›®

BU.232.630.F3.SP25 Quiz 2 2025 - all questions

å•é”¹é€‰ę‹©é¢˜

Consider the following nonlinear regression model: š‘¦ š‘” = š›¼ š‘„ š‘” š›½ + šœ€ š‘” Assume i.i.d. data and š”¼ [ šœ€ š‘” | š‘„ š‘” ] = 0 . To estimate š›¼ and š›½ by GMM, we use the following moment conditions: š”¼ [ š‘¦ š‘” āˆ’ š›¼ š‘„ š‘” š›½ ] = 0 š”¼ [ ( š‘¦ š‘” āˆ’ š›¼ š‘„ š‘” š›½ ) š‘„ š‘” ] = 0 To compute the variance of the estimates, we need to estimate the matrices š›¤ 0 and š›· 0 .

选锹
A.The estimate of the matrix š›¤ 0 is š›¤ Ģ‚ 0 = [ āˆ’ 1 š‘‡ āˆ‘ š‘” = 1 š‘‡ š‘„ š‘” š›½ āˆ’ 1 š‘‡ āˆ‘ š‘” = 1 š‘‡ š‘„ š‘” š›½ + 1 āˆ’ 1 š‘‡ āˆ‘ š‘” = 1 š‘‡ š›¼ š‘„ š‘” š›½ log ( š‘„ š‘” ) āˆ’ 1 š‘‡ āˆ‘ š‘” = 1 š‘‡ š›¼ š‘„ š‘” š›½ + 1 log ( š‘„ š‘” ) ]
B.The estimate of the matrix š›¤ 0 is š›¤ Ģ‚ 0 = [ 1 š‘‡ āˆ‘ š‘” = 1 š‘‡ š‘„ š‘” š›½ 1 š‘‡ āˆ‘ š‘” = 1 š‘‡ š›¼ š‘„ š‘” š›½ log ( š‘„ š‘” ) āˆ’ 1 š‘‡ āˆ‘ š‘” = 1 š‘‡ š‘„ š‘” š›½ + 1 1 š‘‡ āˆ‘ š‘” = 1 š‘‡ š›¼ š‘„ š‘” š›½ + 1 log ( š‘„ š‘” ) ]
C.The estimate of the matrix š›¤ 0 is š›¤ Ģ‚ 0 = [ āˆ’ 1 š‘‡ āˆ‘ š‘” = 1 š‘‡ š‘„ š‘” š›½ āˆ’ 1 š‘‡ āˆ‘ š‘” = 1 š‘‡ š›¼ š‘„ š‘” š›½ log ( š‘„ š‘” ) āˆ’ 1 š‘‡ āˆ‘ š‘” = 1 š‘‡ š‘„ š‘” š›½ + 1 āˆ’ 1 š‘‡ āˆ‘ š‘” = 1 š‘‡ š›¼ š‘„ š‘” š›½ + 1 log ( š‘„ š‘” ) ]
D.There is not enough information to compute the estimate of the matrix š›¤ 0 .
E.The estimate of the matrix š›¤ 0 is š›¤ Ģ‚ 0 = [ āˆ’ 1 š‘‡ āˆ‘ š‘” = 1 š‘‡ š‘„ š‘” š›½ āˆ’ 1 š‘‡ āˆ‘ š‘” = 1 š‘‡ š›¼ š‘„ š‘” š›½ log ( š‘„ š‘” ) āˆ’ 1 š‘‡ āˆ‘ š‘” = 1 š‘‡ š›¼ š‘„ š‘” š›½ log ( š‘„ š‘” ) āˆ’ 1 š‘‡ āˆ‘ š‘” = 1 š‘‡ š›¼ š‘„ š‘” š›½ + 1 log ( š‘„ š‘” ) ]
ęŸ„ēœ‹č§£ęž

ęŸ„ēœ‹č§£ęž

ę ‡å‡†ē­”ę”ˆ
Please login to view
ę€č·Æåˆ†ęž
We are given a nonlinear regression model y_t = α x_t^β + ε_t with i.i.d. data and E[ε_t | x_t] = 0. The GMM moment conditions are: 1) E[y_t āˆ’ α x_t^β] = 0 2) E[(y_t āˆ’ α x_t^β) x_t] = 0 To compute the asymptotic variance of the GMM estimates, we need the matrix Ī“0, which is the expectation of the Jacobian of the moment conditions with respect to the parameter vector Īø = (α, β). Denoting g1,t = y_t āˆ’ α x_t^β and g2,t = (y_t āˆ’ α x_t^β) x_t, the Jacobian āˆ‚g_t/āˆ‚Īø is a 2Ɨ2 matrix consisting of the derivatives of g1,t and g2,t with respect to α and β: - For g1,t = y_t āˆ’ α x_t^β: āˆ‚g1,t/āˆ‚Ī± = āˆ’x_t^β āˆ‚g1,t/āˆ‚Ī² = āˆ’Ī± x_t^β log(x_t) - For g2,t = (y_t āˆ’ α x_t^β) x_t: āˆ‚g2,t/āˆ‚Ī± = āˆ’x_t^(β+1) āˆ‚g2,t/āˆ‚Ī² = āˆ’Ī±......Login to view full explanation

ē™»å½•å³åÆęŸ„ēœ‹å®Œę•“ē­”ę”ˆ

ęˆ‘ä»¬ę”¶å½•äŗ†å…Øēƒč¶…50000é“č€ƒčÆ•åŽŸé¢˜äøŽčÆ¦ē»†č§£ęž,ēŽ°åœØē™»å½•,ē«‹å³čŽ·å¾—ē­”ę”ˆć€‚

ē±»ä¼¼é—®é¢˜

Consider the following nonlinear regression model: yi=α+βxi+εi, Assume i.i.d. data and š”¼[εi|xi]=0. To estimate α and β by GMM, we need at least two moment conditions, and we use š”¼[yiāˆ’Ī±āˆ’Ī²xi]=0 š”¼[(yiāˆ’Ī±āˆ’Ī²xi)xiβxiāˆ’1]=0 Chose the correct answer below.

Consider the following nonlinear regression model: š‘¦ š‘” = š›¼ š‘„ š‘” š›½ + šœ€ š‘” Assume i.i.d. data and š”¼ [ šœ€ š‘” | š‘„ š‘” ] = 0 . To estimate š›¼ and š›½ by GMM, we use the following moment conditions: š”¼ [ š‘¦ š‘” āˆ’ š›¼ š‘„ š‘” š›½ ] = 0 š”¼ [ ( š‘¦ š‘” āˆ’ š›¼ š‘„ š‘” š›½ ) š‘„ š‘” ] = 0 We have an i.i.d. sample with š‘‡ = 1000 observations, with āˆ‘ š‘” = 1 š‘‡ š‘„ š‘” = 3000 and āˆ‘ š‘” = 1 š‘‡ š‘„ š‘” 2 = 5000 . We obtain point estimates š›¼ Ģ‚ = āˆ’ 3 and š›½ Ģ‚ = 2 . To compute the variance of the estimates, we need to estimate the matrix š›¤ 0 , š›¤ Ģ‚ 0 = [ š›¤ Ģ‚ 11 š›¤ Ģ‚ 12 š›¤ Ģ‚ 21 š›¤ Ģ‚ 22 ] Then, the value š›¤ Ģ‚ 11 is:

Consider the following nonlinear regression model: š‘¦ š‘” = š›¼ š‘„ š‘” š›½ + šœ€ š‘” Assume i.i.d. data and š”¼ [ šœ€ š‘” | š‘„ š‘” ] = 0 . To estimate š›¼ and š›½ by GMM, we use the following moment conditions: š”¼ [ š‘¦ š‘” āˆ’ š›¼ š‘„ š‘” š›½ ] = 0 š”¼ [ ( š‘¦ š‘” āˆ’ š›¼ š‘„ š‘” š›½ ) š‘„ š‘” ] = 0 We have an i.i.d. sample with š‘‡ = 1000 observations, with āˆ‘ š‘” = 1 š‘‡ š‘„ š‘” = 100 , āˆ‘ š‘” = 1 š‘‡ š‘„ š‘” 2 = 200 and āˆ‘ š‘” = 1 š‘‡ š‘„ š‘” 3 = 800 . We obtain point estimates š›¼ Ģ‚ = āˆ’ 1 and š›½ Ģ‚ = 3 . To compute the variance of the estimates, we need to estimate the matrix š›¤ 0 , š›¤ Ģ‚ 0 = [ š›¤ Ģ‚ 11 š›¤ Ģ‚ 12 š›¤ Ģ‚ 21 š›¤ Ģ‚ 22 ] Then, the value š›¤ Ģ‚ 11 is:

Consider the following nonlinear regression model: š‘¦ š‘” = š›¼ š‘„ š‘” š›½ + šœ€ š‘” Assume i.i.d. data and š”¼ [ šœ€ š‘” | š‘„ š‘” ] = 0 . To estimate š›¼ and š›½ by GMM, we use the following moment conditions: š”¼ [ š‘¦ š‘” āˆ’ š›¼ š‘„ š‘” š›½ ] = 0 š”¼ [ ( š‘¦ š‘” āˆ’ š›¼ š‘„ š‘” š›½ ) š‘„ š‘” ] = 0 We have an i.i.d. sample with š‘‡ = 1000 observations, with āˆ‘ š‘” = 1 š‘‡ š‘„ š‘” = 1000 and āˆ‘ š‘” = 1 š‘‡ š‘„ š‘” 2 = 4000 . We obtain point estimates š›¼ Ģ‚ = 1 and š›½ Ģ‚ = 2 . To compute the variance of the estimates, we need to estimate the matrix š›¤ 0 , š›¤ Ģ‚ 0 = [ š›¤ Ģ‚ 11 š›¤ Ģ‚ 12 š›¤ Ģ‚ 21 š›¤ Ģ‚ 22 ] Then, the value š›¤ Ģ‚ 11 is:

ę›“å¤šē•™å­¦ē”Ÿå®žē”Øå·„å…·

åŠ å…„ęˆ‘ä»¬ļ¼Œē«‹å³č§£é” ęµ·é‡ēœŸé¢˜ äøŽ ē‹¬å®¶č§£ęžļ¼Œč®©å¤ä¹ åæ«äŗŗäø€ę­„ļ¼