้ข็ฎ
ๅ้กน้ๆฉ้ข
Consider the following nonlinear regression model: ๐ฆ ๐ = ๐ผ + ๐ฝ ๐ฅ ๐ + ๐ ๐ , Assume i.i.d. data and ๐ผ [ ๐ ๐ | ๐ฅ ๐ ] = 0 . To estimate ๐ผ and ๐ฝ by GMM, we use the two theoretical moment conditions ๐ผ [ ๐ฆ ๐ โ ๐ผ โ ๐ฝ ๐ฅ ๐ ] = 0 ๐ผ [ ( ๐ฆ ๐ โ ๐ผ โ ๐ฝ ๐ฅ ๐ ) ๐ฅ ๐ ] = 0 To compute the variance of the GMM estimator we need the matrices ๐ค 0 and ๐ท 0 .
้้กน
A.The estimate of the matrix
๐ค
0
is:
๐ค
ฬ
0
=
[
0
โ
1
๐
โ
๐
=
1
๐
๐ฅ
๐
๐ฝ
๐ฅ
๐
โ
1
โ
1
๐
โ
๐
=
1
๐
๐ฝ
๐ฅ
๐
โ
1
๐
โ
๐
=
1
๐
๐ฅ
๐
2
๐ฝ
๐ฅ
๐
โ
1
]
.
B.The estimate of the matrix
๐ค
0
is:
๐ค
ฬ
0
=
[
โ
1
โ
1
๐
โ
๐
=
1
๐
๐ฅ
๐
๐ฝ
๐ฅ
๐
โ
1
โ
1
๐
โ
๐
=
1
๐
๐ฅ
๐
โ
1
๐
โ
๐
=
1
๐
๐ฅ
๐
2
๐ฝ
๐ฅ
๐
โ
1
]
.
C.The estimate of the matrix
๐ค
0
is:
๐ค
ฬ
0
=
[
โ
1
โ
1
๐
โ
๐
=
1
๐
๐ฝ
๐ฅ
๐
โ
1
๐
โ
๐
=
1
๐
๐ฅ
๐
โ
1
๐
โ
๐
=
1
๐
๐ฝ
๐ฅ
๐
]
.
D.There is not enough information to compute the estimate of the matrix
๐ค
0
.
E.The estimate of the matrix
๐ค
0
is:
๐ค
ฬ
0
=
[
โ
1
โ
1
๐
โ
๐
=
1
๐
๐ฅ
๐
๐ฝ
๐ฅ
๐
โ
1
โ
1
๐
โ
๐
=
1
๐
๐ฅ
๐
๐ฝ
๐ฅ
๐
โ
1
โ
1
๐
โ
๐
=
1
๐
๐ฅ
๐
2
๐ฝ
๐ฅ
๐
โ
1
]
.
ๆฅ็่งฃๆ
ๆ ๅ็ญๆก
Please login to view
ๆ่ทฏๅๆ
The prompt asks about computing the variance of the GMM estimator and the required matrices ฮ0 and ฮ0, given a nonlinear regression with two moment conditions. We need to evaluate each proposed form of ฮฬ0 and the claim about information sufficiency.
Option A: 'There is not enough information to compute the estimate of the matrix ฮ0.' This statement would be plausible if the data or the exact form of the moment conditions or the weighting matrix were insufficient to identify ฮ0. In GMM theory, ฮ0 is typically the limit of the Jacobian (the derivative of the moment conditions with respect to the parameters) times the variance of the instruments, evaluated at the true parameter values. Since we are given the two theoretical moment conditions and a model with observable x_i and y_i, and assuming standard regularity conditions (finite moments, identifiability), ฮ0 can be computed from the model's derivatives and the chosen instruments. Therefore, ......Login to view full explanation็ปๅฝๅณๅฏๆฅ็ๅฎๆด็ญๆก
ๆไปฌๆถๅฝไบๅ จ็่ถ 50000้่่ฏๅ้ขไธ่ฏฆ็ป่งฃๆ,็ฐๅจ็ปๅฝ,็ซๅณ่ทๅพ็ญๆกใ
็ฑปไผผ้ฎ้ข
Consider the following nonlinear regression model: ๐ฆ ๐ก = ๐ผ ๐ฅ ๐ก ๐ฝ + ๐ ๐ก Assume i.i.d. data and ๐ผ [ ๐ ๐ก | ๐ฅ ๐ก ] = 0 . To estimate ๐ผ and ๐ฝ by GMM, we need two moment conditions. Choose the best answer below.
Consider the following nonlinear regression model: ๐ฆ ๐ก = ๐ผ ๐ฅ ๐ก ๐ฝ + ๐ ๐ก Assume i.i.d. data and ๐ผ [ ๐ ๐ก | ๐ฅ ๐ก ] = 0 . To estimate ๐ผ and ๐ฝ by GMM, we chose among the following moment conditions: ๐ผ [ ๐ฆ ๐ก โ ๐ผ ๐ฅ ๐ก ๐ฝ ] = 0 ๐ผ [ ( ๐ฆ ๐ก โ ๐ผ ๐ฅ ๐ก ๐ฝ ) ๐ฅ ๐ก ] = 0 ๐ผ [ ( ๐ฆ ๐ก โ ๐ผ ๐ฅ ๐ก ๐ฝ ) 1 ๐ฅ ๐ก ] = 0 Choose the most appropriate answer below:
Consider the following nonlinear regression model: ๐ฆ ๐ก = ๐ผ ๐ฅ ๐ก ๐ฝ + ๐ ๐ก Assume i.i.d. data and ๐ผ [ ๐ ๐ก | ๐ฅ ๐ก ] = 0 . To estimate ๐ผ and ๐ฝ by GMM, we use the following moment conditions: ๐ผ [ ๐ฆ ๐ก โ ๐ผ ๐ฅ ๐ก ๐ฝ ] = 0 ๐ผ [ ( ๐ฆ ๐ก โ ๐ผ ๐ฅ ๐ก ๐ฝ ) ๐ฅ ๐ก ] = 0 We have an i.i.d. sample with ๐ = 1000 observations, with โ ๐ก = 1 ๐ ๐ฅ ๐ก = 1000 and โ ๐ก = 1 ๐ ๐ฅ ๐ก 2 = 4000 . We obtain point estimates ๐ผ ฬ = 1 and ๐ฝ ฬ = 2 . To compute the variance of the estimates, we need to estimate the matrix ๐ค 0 , ๐ค ฬ 0 = [ ๐ค ฬ 11 ๐ค ฬ 12 ๐ค ฬ 21 ๐ค ฬ 22 ] Then, the value ๐ค ฬ 11 is:
Consider the following linear regression model: ๐ฆ ๐ = ๐ผ + ๐ฝ ๐ฅ ๐ + ๐พ ๐ฅ ๐ 2 + ๐ ๐ , Assume i.i.d. data and ๐ผ [ ๐ ๐ | ๐ฅ ๐ ] = 0 . To estimate ๐ผ , ๐ฝ and ๐พ by GMM, we use the three theoretical moment conditions ๐ผ [ ๐ฆ ๐ โ ๐ผ โ ๐ฝ ๐ฅ ๐ โ ๐พ ๐ฅ ๐ 2 ] = 0 ๐ผ [ ( ๐ฆ ๐ โ ๐ผ โ ๐ฝ ๐ฅ ๐ โ ๐พ ๐ฅ ๐ 2 ) ๐ฅ ๐ ] = 0 ๐ผ [ ( ๐ฆ ๐ โ ๐ผ โ ๐ฝ ๐ฅ ๐ โ ๐พ ๐ฅ ๐ 2 ) ๐ฅ ๐ 2 ] = 0 To compute the variance of the GMM estimator we need the matrices ๐ค 0 and ๐ท 0 .
ๆดๅค็ๅญฆ็ๅฎ็จๅทฅๅ ท
ๅธๆไฝ ็ๅญฆไน ๅๅพๆด็ฎๅ
ๅ ๅ ฅๆไปฌ๏ผ็ซๅณ่งฃ้ ๆตท้็้ข ไธ ็ฌๅฎถ่งฃๆ๏ผ่ฎฉๅคไน ๅฟซไบบไธๆญฅ๏ผ