้ข˜็›ฎ
้ข˜็›ฎ
ๅ•้กน้€‰ๆ‹ฉ้ข˜

Consider the following nonlinear regression model: ๐‘ฆ ๐‘– = ๐›ผ + ๐›ฝ ๐‘ฅ ๐‘– + ๐œ€ ๐‘– , Assume i.i.d. data and ๐”ผ [ ๐œ€ ๐‘– | ๐‘ฅ ๐‘– ] = 0 . To estimate ๐›ผ and ๐›ฝ by GMM, we use the two theoretical moment conditions ๐”ผ [ ๐‘ฆ ๐‘– โˆ’ ๐›ผ โˆ’ ๐›ฝ ๐‘ฅ ๐‘– ] = 0 ๐”ผ [ ( ๐‘ฆ ๐‘– โˆ’ ๐›ผ โˆ’ ๐›ฝ ๐‘ฅ ๐‘– ) ๐‘ฅ ๐‘– ] = 0 To compute the variance of the GMM estimator we need the matrices ๐›ค 0 and ๐›ท 0 .

้€‰้กน
A.The estimate of the matrix ๐›ค 0 is: ๐›ค ฬ‚ 0 = [ 0 โˆ’ 1 ๐‘‡ โˆ‘ ๐‘– = 1 ๐‘‡ ๐‘ฅ ๐‘– ๐›ฝ ๐‘ฅ ๐‘– โˆ’ 1 โˆ’ 1 ๐‘‡ โˆ‘ ๐‘– = 1 ๐‘‡ ๐›ฝ ๐‘ฅ ๐‘– โˆ’ 1 ๐‘‡ โˆ‘ ๐‘– = 1 ๐‘‡ ๐‘ฅ ๐‘– 2 ๐›ฝ ๐‘ฅ ๐‘– โˆ’ 1 ] .
B.The estimate of the matrix ๐›ค 0 is: ๐›ค ฬ‚ 0 = [ โˆ’ 1 โˆ’ 1 ๐‘‡ โˆ‘ ๐‘– = 1 ๐‘‡ ๐‘ฅ ๐‘– ๐›ฝ ๐‘ฅ ๐‘– โˆ’ 1 โˆ’ 1 ๐‘‡ โˆ‘ ๐‘– = 1 ๐‘‡ ๐‘ฅ ๐‘– โˆ’ 1 ๐‘‡ โˆ‘ ๐‘– = 1 ๐‘‡ ๐‘ฅ ๐‘– 2 ๐›ฝ ๐‘ฅ ๐‘– โˆ’ 1 ] .
C.The estimate of the matrix ๐›ค 0 is: ๐›ค ฬ‚ 0 = [ โˆ’ 1 โˆ’ 1 ๐‘‡ โˆ‘ ๐‘– = 1 ๐‘‡ ๐›ฝ ๐‘ฅ ๐‘– โˆ’ 1 ๐‘‡ โˆ‘ ๐‘– = 1 ๐‘‡ ๐‘ฅ ๐‘– โˆ’ 1 ๐‘‡ โˆ‘ ๐‘– = 1 ๐‘‡ ๐›ฝ ๐‘ฅ ๐‘– ] .
D.There is not enough information to compute the estimate of the matrix ๐›ค 0 .
E.The estimate of the matrix ๐›ค 0 is: ๐›ค ฬ‚ 0 = [ โˆ’ 1 โˆ’ 1 ๐‘‡ โˆ‘ ๐‘– = 1 ๐‘‡ ๐‘ฅ ๐‘– ๐›ฝ ๐‘ฅ ๐‘– โˆ’ 1 โˆ’ 1 ๐‘‡ โˆ‘ ๐‘– = 1 ๐‘‡ ๐‘ฅ ๐‘– ๐›ฝ ๐‘ฅ ๐‘– โˆ’ 1 โˆ’ 1 ๐‘‡ โˆ‘ ๐‘– = 1 ๐‘‡ ๐‘ฅ ๐‘– 2 ๐›ฝ ๐‘ฅ ๐‘– โˆ’ 1 ] .
ๆŸฅ็œ‹่งฃๆž

ๆŸฅ็œ‹่งฃๆž

ๆ ‡ๅ‡†็ญ”ๆกˆ
Please login to view
ๆ€่ทฏๅˆ†ๆž
The prompt asks about computing the variance of the GMM estimator and the required matrices ฮ“0 and ฮ›0, given a nonlinear regression with two moment conditions. We need to evaluate each proposed form of ฮ“ฬ‚0 and the claim about information sufficiency. Option A: 'There is not enough information to compute the estimate of the matrix ฮ“0.' This statement would be plausible if the data or the exact form of the moment conditions or the weighting matrix were insufficient to identify ฮ“0. In GMM theory, ฮ“0 is typically the limit of the Jacobian (the derivative of the moment conditions with respect to the parameters) times the variance of the instruments, evaluated at the true parameter values. Since we are given the two theoretical moment conditions and a model with observable x_i and y_i, and assuming standard regularity conditions (finite moments, identifiability), ฮ“0 can be computed from the model's derivatives and the chosen instruments. Therefore, ......Login to view full explanation

็™ปๅฝ•ๅณๅฏๆŸฅ็œ‹ๅฎŒๆ•ด็ญ”ๆกˆ

ๆˆ‘ไปฌๆ”ถๅฝ•ไบ†ๅ…จ็ƒ่ถ…50000้“่€ƒ่ฏ•ๅŽŸ้ข˜ไธŽ่ฏฆ็ป†่งฃๆž,็Žฐๅœจ็™ปๅฝ•,็ซ‹ๅณ่Žทๅพ—็ญ”ๆกˆใ€‚

็ฑปไผผ้—ฎ้ข˜

Consider the following nonlinear regression model: ๐‘ฆ ๐‘ก = ๐›ผ ๐‘ฅ ๐‘ก ๐›ฝ + ๐œ€ ๐‘ก Assume i.i.d. data and ๐”ผ [ ๐œ€ ๐‘ก | ๐‘ฅ ๐‘ก ] = 0 . To estimate ๐›ผ and ๐›ฝ by GMM, we need two moment conditions. Choose the best answer below.

Consider the following nonlinear regression model: ๐‘ฆ ๐‘ก = ๐›ผ ๐‘ฅ ๐‘ก ๐›ฝ + ๐œ€ ๐‘ก Assume i.i.d. data and ๐”ผ [ ๐œ€ ๐‘ก | ๐‘ฅ ๐‘ก ] = 0 . To estimate ๐›ผ and ๐›ฝ by GMM, we chose among the following moment conditions: ๐”ผ [ ๐‘ฆ ๐‘ก โˆ’ ๐›ผ ๐‘ฅ ๐‘ก ๐›ฝ ] = 0 ๐”ผ [ ( ๐‘ฆ ๐‘ก โˆ’ ๐›ผ ๐‘ฅ ๐‘ก ๐›ฝ ) ๐‘ฅ ๐‘ก ] = 0 ๐”ผ [ ( ๐‘ฆ ๐‘ก โˆ’ ๐›ผ ๐‘ฅ ๐‘ก ๐›ฝ ) 1 ๐‘ฅ ๐‘ก ] = 0 Choose the most appropriate answer below:

Consider the following nonlinear regression model: ๐‘ฆ ๐‘ก = ๐›ผ ๐‘ฅ ๐‘ก ๐›ฝ + ๐œ€ ๐‘ก Assume i.i.d. data and ๐”ผ [ ๐œ€ ๐‘ก | ๐‘ฅ ๐‘ก ] = 0 . To estimate ๐›ผ and ๐›ฝ by GMM, we use the following moment conditions: ๐”ผ [ ๐‘ฆ ๐‘ก โˆ’ ๐›ผ ๐‘ฅ ๐‘ก ๐›ฝ ] = 0 ๐”ผ [ ( ๐‘ฆ ๐‘ก โˆ’ ๐›ผ ๐‘ฅ ๐‘ก ๐›ฝ ) ๐‘ฅ ๐‘ก ] = 0 We have an i.i.d. sample with ๐‘‡ = 1000 observations, with โˆ‘ ๐‘ก = 1 ๐‘‡ ๐‘ฅ ๐‘ก = 1000 and โˆ‘ ๐‘ก = 1 ๐‘‡ ๐‘ฅ ๐‘ก 2 = 4000 . We obtain point estimates ๐›ผ ฬ‚ = 1 and ๐›ฝ ฬ‚ = 2 . To compute the variance of the estimates, we need to estimate the matrix ๐›ค 0 , ๐›ค ฬ‚ 0 = [ ๐›ค ฬ‚ 11 ๐›ค ฬ‚ 12 ๐›ค ฬ‚ 21 ๐›ค ฬ‚ 22 ] Then, the value ๐›ค ฬ‚ 11 is:

Consider the following linear regression model: ๐‘ฆ ๐‘– = ๐›ผ + ๐›ฝ ๐‘ฅ ๐‘– + ๐›พ ๐‘ฅ ๐‘– 2 + ๐œ€ ๐‘– , Assume i.i.d. data and ๐”ผ [ ๐œ€ ๐‘– | ๐‘ฅ ๐‘– ] = 0 . To estimate ๐›ผ , ๐›ฝ and ๐›พ by GMM, we use the three theoretical moment conditions ๐”ผ [ ๐‘ฆ ๐‘– โˆ’ ๐›ผ โˆ’ ๐›ฝ ๐‘ฅ ๐‘– โˆ’ ๐›พ ๐‘ฅ ๐‘– 2 ] = 0 ๐”ผ [ ( ๐‘ฆ ๐‘– โˆ’ ๐›ผ โˆ’ ๐›ฝ ๐‘ฅ ๐‘– โˆ’ ๐›พ ๐‘ฅ ๐‘– 2 ) ๐‘ฅ ๐‘– ] = 0 ๐”ผ [ ( ๐‘ฆ ๐‘– โˆ’ ๐›ผ โˆ’ ๐›ฝ ๐‘ฅ ๐‘– โˆ’ ๐›พ ๐‘ฅ ๐‘– 2 ) ๐‘ฅ ๐‘– 2 ] = 0 To compute the variance of the GMM estimator we need the matrices ๐›ค 0 and ๐›ท 0 .

ๆ›ดๅคš็•™ๅญฆ็”Ÿๅฎž็”จๅทฅๅ…ท

ๅŠ ๅ…ฅๆˆ‘ไปฌ๏ผŒ็ซ‹ๅณ่งฃ้” ๆตท้‡็œŸ้ข˜ ไธŽ ็‹ฌๅฎถ่งฃๆž๏ผŒ่ฎฉๅคไน ๅฟซไบบไธ€ๆญฅ๏ผ