้ข˜็›ฎ
้ข˜็›ฎ
ๅ•้กน้€‰ๆ‹ฉ้ข˜

Consider the following nonlinear regression model: ๐‘ฆ ๐‘ก = ๐›ผ ๐‘ฅ ๐‘ก ๐›ฝ + ๐œ€ ๐‘ก Assume i.i.d. data and ๐”ผ [ ๐œ€ ๐‘ก | ๐‘ฅ ๐‘ก ] = 0 . To estimate ๐›ผ and ๐›ฝ by GMM, we use the following moment conditions: ๐”ผ [ ๐‘ฆ ๐‘ก โˆ’ ๐›ผ ๐‘ฅ ๐‘ก ๐›ฝ ] = 0 ๐”ผ [ ( ๐‘ฆ ๐‘ก โˆ’ ๐›ผ ๐‘ฅ ๐‘ก ๐›ฝ ) ๐‘ฅ ๐‘ก ] = 0 We have an i.i.d. sample with ๐‘‡ = 1000 observations, with โˆ‘ ๐‘ก = 1 ๐‘‡ ๐‘ฅ ๐‘ก = 1000 and โˆ‘ ๐‘ก = 1 ๐‘‡ ๐‘ฅ ๐‘ก 2 = 4000 . We obtain point estimates ๐›ผ ฬ‚ = 1 and ๐›ฝ ฬ‚ = 2 . To compute the variance of the estimates, we need to estimate the matrix ๐›ค 0 , ๐›ค ฬ‚ 0 = [ ๐›ค ฬ‚ 11 ๐›ค ฬ‚ 12 ๐›ค ฬ‚ 21 ๐›ค ฬ‚ 22 ] Then, the value ๐›ค ฬ‚ 11 is:

้€‰้กน
A.๐›ค ฬ‚ 11 = โˆ’ 4
B.๐›ค ฬ‚ 11 = 4000
C.There is not enough information to compute ๐›ค ฬ‚ 11 .
D.๐›ค ฬ‚ 11 = โˆ’ 1
E.๐›ค ฬ‚ 11 = 1000
ๆŸฅ็œ‹่งฃๆž

ๆŸฅ็œ‹่งฃๆž

ๆ ‡ๅ‡†็ญ”ๆกˆ
Please login to view
ๆ€่ทฏๅˆ†ๆž
We start by restating the problem setup and the moment conditions used for GMM estimation. The model is y_t = ฮฑ x_t ฮฒ + ฮต_t with i.i.d. data and E[ฮต_t | x_t] = 0. The moment conditions are: 1) E[y_t โˆ’ ฮฑ x_t ฮฒ] = 0 2) E[(y_t โˆ’ ฮฑ x_t ฮฒ) x_t] = 0 We are given T = 1000, โˆ‘ x_t = 1000, and โˆ‘ x_t^2 = 4000, with the point estimates ฮฑฬ‚ = 1 and ฮฒฬ‚ = 2. To form the ฮ“0 matrix, which is the expected Jacobian of the moment conditions with respect to the parameters ฮธ = (ฮฑ, ฮฒ) evaluated at the true values, we compute the derivatives of the moments: - For g1_t = y_t โˆ’ ฮฑ x_t ฮฒ, the part......Login to view full explanation

็™ปๅฝ•ๅณๅฏๆŸฅ็œ‹ๅฎŒๆ•ด็ญ”ๆกˆ

ๆˆ‘ไปฌๆ”ถๅฝ•ไบ†ๅ…จ็ƒ่ถ…50000้“่€ƒ่ฏ•ๅŽŸ้ข˜ไธŽ่ฏฆ็ป†่งฃๆž,็Žฐๅœจ็™ปๅฝ•,็ซ‹ๅณ่Žทๅพ—็ญ”ๆกˆใ€‚

็ฑปไผผ้—ฎ้ข˜

Consider the following nonlinear regression model: ๐‘ฆ ๐‘ก = ๐›ผ ๐‘ฅ ๐‘ก ๐›ฝ + ๐œ€ ๐‘ก Assume i.i.d. data and ๐”ผ [ ๐œ€ ๐‘ก | ๐‘ฅ ๐‘ก ] = 0 . To estimate ๐›ผ and ๐›ฝ by GMM, we need two moment conditions. Choose the best answer below.

Consider the following nonlinear regression model: ๐‘ฆ ๐‘ก = ๐›ผ ๐‘ฅ ๐‘ก ๐›ฝ + ๐œ€ ๐‘ก Assume i.i.d. data and ๐”ผ [ ๐œ€ ๐‘ก | ๐‘ฅ ๐‘ก ] = 0 . To estimate ๐›ผ and ๐›ฝ by GMM, we chose among the following moment conditions: ๐”ผ [ ๐‘ฆ ๐‘ก โˆ’ ๐›ผ ๐‘ฅ ๐‘ก ๐›ฝ ] = 0 ๐”ผ [ ( ๐‘ฆ ๐‘ก โˆ’ ๐›ผ ๐‘ฅ ๐‘ก ๐›ฝ ) ๐‘ฅ ๐‘ก ] = 0 ๐”ผ [ ( ๐‘ฆ ๐‘ก โˆ’ ๐›ผ ๐‘ฅ ๐‘ก ๐›ฝ ) 1 ๐‘ฅ ๐‘ก ] = 0 Choose the most appropriate answer below:

Consider the following nonlinear regression model: ๐‘ฆ ๐‘– = ๐›ผ + ๐›ฝ ๐‘ฅ ๐‘– + ๐œ€ ๐‘– , Assume i.i.d. data and ๐”ผ [ ๐œ€ ๐‘– | ๐‘ฅ ๐‘– ] = 0 . To estimate ๐›ผ and ๐›ฝ by GMM, we use the two theoretical moment conditions ๐”ผ [ ๐‘ฆ ๐‘– โˆ’ ๐›ผ โˆ’ ๐›ฝ ๐‘ฅ ๐‘– ] = 0 ๐”ผ [ ( ๐‘ฆ ๐‘– โˆ’ ๐›ผ โˆ’ ๐›ฝ ๐‘ฅ ๐‘– ) ๐‘ฅ ๐‘– ] = 0 To compute the variance of the GMM estimator we need the matrices ๐›ค 0 and ๐›ท 0 .

Consider the following linear regression model: ๐‘ฆ ๐‘– = ๐›ผ + ๐›ฝ ๐‘ฅ ๐‘– + ๐›พ ๐‘ฅ ๐‘– 2 + ๐œ€ ๐‘– , Assume i.i.d. data and ๐”ผ [ ๐œ€ ๐‘– | ๐‘ฅ ๐‘– ] = 0 . To estimate ๐›ผ , ๐›ฝ and ๐›พ by GMM, we use the three theoretical moment conditions ๐”ผ [ ๐‘ฆ ๐‘– โˆ’ ๐›ผ โˆ’ ๐›ฝ ๐‘ฅ ๐‘– โˆ’ ๐›พ ๐‘ฅ ๐‘– 2 ] = 0 ๐”ผ [ ( ๐‘ฆ ๐‘– โˆ’ ๐›ผ โˆ’ ๐›ฝ ๐‘ฅ ๐‘– โˆ’ ๐›พ ๐‘ฅ ๐‘– 2 ) ๐‘ฅ ๐‘– ] = 0 ๐”ผ [ ( ๐‘ฆ ๐‘– โˆ’ ๐›ผ โˆ’ ๐›ฝ ๐‘ฅ ๐‘– โˆ’ ๐›พ ๐‘ฅ ๐‘– 2 ) ๐‘ฅ ๐‘– 2 ] = 0 To compute the variance of the GMM estimator we need the matrices ๐›ค 0 and ๐›ท 0 .

ๆ›ดๅคš็•™ๅญฆ็”Ÿๅฎž็”จๅทฅๅ…ท

ๅŠ ๅ…ฅๆˆ‘ไปฌ๏ผŒ็ซ‹ๅณ่งฃ้” ๆตท้‡็œŸ้ข˜ ไธŽ ็‹ฌๅฎถ่งฃๆž๏ผŒ่ฎฉๅคไน ๅฟซไบบไธ€ๆญฅ๏ผ