้ข็ฎ
ๅ้กน้ๆฉ้ข
Consider the following nonlinear regression model: ๐ฆ ๐ก = ๐ผ ๐ฅ ๐ก ๐ฝ + ๐ ๐ก Assume i.i.d. data and ๐ผ [ ๐ ๐ก | ๐ฅ ๐ก ] = 0 . To estimate ๐ผ and ๐ฝ by GMM, we use the following moment conditions: ๐ผ [ ๐ฆ ๐ก โ ๐ผ ๐ฅ ๐ก ๐ฝ ] = 0 ๐ผ [ ( ๐ฆ ๐ก โ ๐ผ ๐ฅ ๐ก ๐ฝ ) ๐ฅ ๐ก ] = 0 We have an i.i.d. sample with ๐ = 1000 observations, with โ ๐ก = 1 ๐ ๐ฅ ๐ก = 1000 and โ ๐ก = 1 ๐ ๐ฅ ๐ก 2 = 4000 . We obtain point estimates ๐ผ ฬ = 1 and ๐ฝ ฬ = 2 . To compute the variance of the estimates, we need to estimate the matrix ๐ค 0 , ๐ค ฬ 0 = [ ๐ค ฬ 11 ๐ค ฬ 12 ๐ค ฬ 21 ๐ค ฬ 22 ] Then, the value ๐ค ฬ 11 is:
้้กน
A.๐ค
ฬ
11
=
โ
4
B.๐ค
ฬ
11
=
4000
C.There is not enough information to compute
๐ค
ฬ
11
.
D.๐ค
ฬ
11
=
โ
1
E.๐ค
ฬ
11
=
1000
ๆฅ็่งฃๆ
ๆ ๅ็ญๆก
Please login to view
ๆ่ทฏๅๆ
We start by restating the problem setup and the moment conditions used for GMM estimation. The model is y_t = ฮฑ x_t ฮฒ + ฮต_t with i.i.d. data and E[ฮต_t | x_t] = 0. The moment conditions are:
1) E[y_t โ ฮฑ x_t ฮฒ] = 0
2) E[(y_t โ ฮฑ x_t ฮฒ) x_t] = 0
We are given T = 1000, โ x_t = 1000, and โ x_t^2 = 4000, with the point estimates ฮฑฬ = 1 and ฮฒฬ = 2.
To form the ฮ0 matrix, which is the expected Jacobian of the moment conditions with respect to the parameters ฮธ = (ฮฑ, ฮฒ) evaluated at the true values, we compute the derivatives of the moments:
- For g1_t = y_t โ ฮฑ x_t ฮฒ, the part......Login to view full explanation็ปๅฝๅณๅฏๆฅ็ๅฎๆด็ญๆก
ๆไปฌๆถๅฝไบๅ จ็่ถ 50000้่่ฏๅ้ขไธ่ฏฆ็ป่งฃๆ,็ฐๅจ็ปๅฝ,็ซๅณ่ทๅพ็ญๆกใ
็ฑปไผผ้ฎ้ข
Consider the following nonlinear regression model: ๐ฆ ๐ก = ๐ผ ๐ฅ ๐ก ๐ฝ + ๐ ๐ก Assume i.i.d. data and ๐ผ [ ๐ ๐ก | ๐ฅ ๐ก ] = 0 . To estimate ๐ผ and ๐ฝ by GMM, we need two moment conditions. Choose the best answer below.
Consider the following nonlinear regression model: ๐ฆ ๐ก = ๐ผ ๐ฅ ๐ก ๐ฝ + ๐ ๐ก Assume i.i.d. data and ๐ผ [ ๐ ๐ก | ๐ฅ ๐ก ] = 0 . To estimate ๐ผ and ๐ฝ by GMM, we chose among the following moment conditions: ๐ผ [ ๐ฆ ๐ก โ ๐ผ ๐ฅ ๐ก ๐ฝ ] = 0 ๐ผ [ ( ๐ฆ ๐ก โ ๐ผ ๐ฅ ๐ก ๐ฝ ) ๐ฅ ๐ก ] = 0 ๐ผ [ ( ๐ฆ ๐ก โ ๐ผ ๐ฅ ๐ก ๐ฝ ) 1 ๐ฅ ๐ก ] = 0 Choose the most appropriate answer below:
Consider the following nonlinear regression model: ๐ฆ ๐ = ๐ผ + ๐ฝ ๐ฅ ๐ + ๐ ๐ , Assume i.i.d. data and ๐ผ [ ๐ ๐ | ๐ฅ ๐ ] = 0 . To estimate ๐ผ and ๐ฝ by GMM, we use the two theoretical moment conditions ๐ผ [ ๐ฆ ๐ โ ๐ผ โ ๐ฝ ๐ฅ ๐ ] = 0 ๐ผ [ ( ๐ฆ ๐ โ ๐ผ โ ๐ฝ ๐ฅ ๐ ) ๐ฅ ๐ ] = 0 To compute the variance of the GMM estimator we need the matrices ๐ค 0 and ๐ท 0 .
Consider the following linear regression model: ๐ฆ ๐ = ๐ผ + ๐ฝ ๐ฅ ๐ + ๐พ ๐ฅ ๐ 2 + ๐ ๐ , Assume i.i.d. data and ๐ผ [ ๐ ๐ | ๐ฅ ๐ ] = 0 . To estimate ๐ผ , ๐ฝ and ๐พ by GMM, we use the three theoretical moment conditions ๐ผ [ ๐ฆ ๐ โ ๐ผ โ ๐ฝ ๐ฅ ๐ โ ๐พ ๐ฅ ๐ 2 ] = 0 ๐ผ [ ( ๐ฆ ๐ โ ๐ผ โ ๐ฝ ๐ฅ ๐ โ ๐พ ๐ฅ ๐ 2 ) ๐ฅ ๐ ] = 0 ๐ผ [ ( ๐ฆ ๐ โ ๐ผ โ ๐ฝ ๐ฅ ๐ โ ๐พ ๐ฅ ๐ 2 ) ๐ฅ ๐ 2 ] = 0 To compute the variance of the GMM estimator we need the matrices ๐ค 0 and ๐ท 0 .
ๆดๅค็ๅญฆ็ๅฎ็จๅทฅๅ ท
ๅธๆไฝ ็ๅญฆไน ๅๅพๆด็ฎๅ
ๅ ๅ ฅๆไปฌ๏ผ็ซๅณ่งฃ้ ๆตท้็้ข ไธ ็ฌๅฎถ่งฃๆ๏ผ่ฎฉๅคไน ๅฟซไบบไธๆญฅ๏ผ