é¢˜ē›®
é¢˜ē›®
å•é”¹é€‰ę‹©é¢˜

Consider the following nonlinear regression model: š‘¦ š‘– = š›¼ + š›½ š‘„ š‘– + šœ€ š‘– , Assume i.i.d. data and š”¼ [ šœ€ š‘– | š‘„ š‘– ] = 0 . To estimate š›¼ and š›½ by GMM, we use the two theoretical moment conditions š”¼ [ š‘¦ š‘– āˆ’ š›¼ āˆ’ š›½ š‘„ š‘– ] = 0 š”¼ [ ( š‘¦ š‘– āˆ’ š›¼ āˆ’ š›½ š‘„ š‘– ) š‘„ š‘– ] = 0 To compute the variance of the GMM estimator we need the matrices š›¤ 0 and š›· 0 .

选锹
A.The estimate of the matrix š›¤ 0 is: š›¤ Ģ‚ 0 = [ āˆ’ 1 āˆ’ 1 š‘‡ āˆ‘ š‘– = 1 š‘‡ š›½ š‘„ š‘– āˆ’ 1 š‘‡ āˆ‘ š‘– = 1 š‘‡ š‘„ š‘– āˆ’ 1 š‘‡ āˆ‘ š‘– = 1 š‘‡ š›½ š‘„ š‘– ] .
B.The estimate of the matrix š›¤ 0 is: š›¤ Ģ‚ 0 = [ āˆ’ 1 āˆ’ 1 š‘‡ āˆ‘ š‘– = 1 š‘‡ š‘„ š‘– š›½ š‘„ š‘– āˆ’ 1 āˆ’ 1 š‘‡ āˆ‘ š‘– = 1 š‘‡ š‘„ š‘– š›½ š‘„ š‘– āˆ’ 1 āˆ’ 1 š‘‡ āˆ‘ š‘– = 1 š‘‡ š‘„ š‘– 2 š›½ š‘„ š‘– āˆ’ 1 ] .
C.The estimate of the matrix š›¤ 0 is: š›¤ Ģ‚ 0 = [ 0 āˆ’ 1 š‘‡ āˆ‘ š‘– = 1 š‘‡ š‘„ š‘– š›½ š‘„ š‘– āˆ’ 1 āˆ’ 1 š‘‡ āˆ‘ š‘– = 1 š‘‡ š›½ š‘„ š‘– āˆ’ 1 š‘‡ āˆ‘ š‘– = 1 š‘‡ š‘„ š‘– 2 š›½ š‘„ š‘– āˆ’ 1 ] .
D.There is not enough information to compute the estimate of the matrix š›¤ 0 .
E.The estimate of the matrix š›¤ 0 is: š›¤ Ģ‚ 0 = [ āˆ’ 1 āˆ’ 1 š‘‡ āˆ‘ š‘– = 1 š‘‡ š‘„ š‘– š›½ š‘„ š‘– āˆ’ 1 āˆ’ 1 š‘‡ āˆ‘ š‘– = 1 š‘‡ š‘„ š‘– āˆ’ 1 š‘‡ āˆ‘ š‘– = 1 š‘‡ š‘„ š‘– 2 š›½ š‘„ š‘– āˆ’ 1 ] .
ęŸ„ēœ‹č§£ęž

ęŸ„ēœ‹č§£ęž

ę ‡å‡†ē­”ę”ˆ
Please login to view
ę€č·Æåˆ†ęž
The question asks about computing the variance of the GMM estimator and the necessary matrices Ī“0 and Ī©0, given a nonlinear regression model with moment conditions. We are to evaluate the provided options for the estimate of Ī“0. Option 1: 'The estimate of the matrix Ī“0 is: Γ̂0 = [[āˆ’1, āˆ’1]įµ€ āˆ‘i=1^T β x_i, [āˆ’1, āˆ‘i=1^T x_i]įµ€ āˆ’1įµ€ š‘„_i ]' This presentation of Γ̂0 is unclear and inconsistent with the usual definition of Ī“0 in GMM, which involves the expectation of the Jacobian of the moment conditions with respect to the parameters evaluated at the true values. The expression here mixes sums and vector notation in a way that does not correspond to a standard, well-defined Ī“0. Moreover, it does not clearly separate dimensions or show how each block is formed, making it highly suspect as a correct estimator. ......Login to view full explanation

ē™»å½•å³åÆęŸ„ēœ‹å®Œę•“ē­”ę”ˆ

ęˆ‘ä»¬ę”¶å½•äŗ†å…Øēƒč¶…50000é“č€ƒčÆ•åŽŸé¢˜äøŽčÆ¦ē»†č§£ęž,ēŽ°åœØē™»å½•,ē«‹å³čŽ·å¾—ē­”ę”ˆć€‚

ē±»ä¼¼é—®é¢˜

Consider the following nonlinear regression model: yi=α+eβxi+εi, Assume i.i.d. data and š”¼[εi|xi]=0. To estimate α and β by GMM, we use the two theoretical moment conditions š”¼[yiāˆ’Ī±āˆ’eβxi]=0 š”¼[(yiāˆ’Ī±āˆ’eβxi)xi]=0 To compute the variance of the GMM estimator we need the matrices Ī“0 and Φ0.

Consider the following nonlinear regression model: yi=α+eβxi+εi, Assume i.i.d. data and š”¼[εi|xi]=0. To estimate α and β by GMM, we need two moment conditions. Choose the best answer below:

Consider the following nonlinear regression model: š‘¦ š‘” = š›¼ š‘„ š‘” š›½ + šœ€ š‘” Assume i.i.d. data and š”¼ [ šœ€ š‘” | š‘„ š‘” ] = 0 . To estimate š›¼ and š›½ by GMM, we use the following moment conditions: š”¼ [ š‘¦ š‘” āˆ’ š›¼ š‘„ š‘” š›½ ] = 0 š”¼ [ ( š‘¦ š‘” āˆ’ š›¼ š‘„ š‘” š›½ ) š‘„ š‘” ] = 0 We have an i.i.d. sample with š‘‡ = 8000 observations, with āˆ‘ š‘” = 1 š‘‡ š‘„ š‘” = 2000 , āˆ‘ š‘” = 1 š‘‡ š‘„ š‘” 2 = 4000 and āˆ‘ š‘” = 1 š‘‡ š‘„ š‘” 3 = 8000 . We obtain point estimates š›¼ Ģ‚ = āˆ’ 5 and š›½ Ģ‚ = 3 . To compute the variance of the estimates, we need to estimate the matrix š›¤ 0 , š›¤ Ģ‚ 0 = [ š›¤ Ģ‚ 11 š›¤ Ģ‚ 12 š›¤ Ģ‚ 21 š›¤ Ģ‚ 22 ] Then, the value š›¤ Ģ‚ 11 is:

Consider the following linear regression model: š‘¦ š‘– = š›¼ + š›½ š‘„ š‘– + šœ€ š‘– , Assume i.i.d. data and š”¼ [ šœ€ š‘– | š‘„ š‘– ] = 0 . To estimate š›¼ and š›½ by GMM, we use the three theoretical moment conditions š”¼ [ š‘¦ š‘– āˆ’ š›¼ āˆ’ š›½ š‘„ š‘– ] = 0 š”¼ [ ( š‘¦ š‘– āˆ’ š›¼ āˆ’ š›½ š‘„ š‘– ) š‘„ š‘– ] = 0 š”¼ [ ( š‘¦ š‘– āˆ’ š›¼ āˆ’ š›½ š‘„ š‘– ) š‘„ š‘– 2 ] = 0 To compute the variance of the GMM estimator we need the matrices š›¤ 0 and š›· 0 .

ę›“å¤šē•™å­¦ē”Ÿå®žē”Øå·„å…·

åŠ å…„ęˆ‘ä»¬ļ¼Œē«‹å³č§£é” ęµ·é‡ēœŸé¢˜ äøŽ ē‹¬å®¶č§£ęžļ¼Œč®©å¤ä¹ åæ«äŗŗäø€ę­„ļ¼