é¢˜ē›®
é¢˜ē›®

BU.232.630.W1.SP25 Quiz 2 solutions

å•é”¹é€‰ę‹©é¢˜

Consider the following linear regression model: š‘¦ š‘– = š›¼ + š›½ š‘„ š‘– + šœ€ š‘– , Assume i.i.d. data and š”¼ [ šœ€ š‘– | š‘„ š‘– ] = 0 . To estimate š›¼ and š›½ by GMM, we use the three theoretical moment conditions š”¼ [ š‘¦ š‘– āˆ’ š›¼ āˆ’ š›½ š‘„ š‘– ] = 0 š”¼ [ ( š‘¦ š‘– āˆ’ š›¼ āˆ’ š›½ š‘„ š‘– ) š‘„ š‘– ] = 0 š”¼ [ ( š‘¦ š‘– āˆ’ š›¼ āˆ’ š›½ š‘„ š‘– ) š‘„ š‘– 2 ] = 0 To compute the variance of the GMM estimator we need the matrices š›¤ 0 and š›· 0 .

选锹
A.There is not enough information to compute the matrix š›¤ 0 .
B.The matrix š›¤ 0 is: š›¤ 0 = š”¼ [ 1 š‘„ š‘– š‘„ š‘– š‘„ š‘– 2 ] .
C.The matrix š›¤ 0 is: š›¤ 0 = š”¼ [ āˆ’ 1 āˆ’ š‘„ š‘– āˆ’ š‘„ š‘– āˆ’ š‘„ š‘– 2 āˆ’ š‘„ š‘– 2 āˆ’ š‘„ š‘– 3 ] .
D.The matrix š›¤ 0 is: š›¤ 0 = š”¼ [ āˆ’ 1 āˆ’ š‘„ š‘– āˆ’ š‘„ š‘– āˆ’ š‘„ š‘– 2 ] .
E.The matrix š›¤ 0 is: š›¤ 0 = š”¼ [ āˆ’ 1 āˆ’ š‘„ š‘– āˆ’ š‘„ š‘– 2 āˆ’ š‘„ š‘– āˆ’ š‘„ š‘– 2 āˆ’ š‘„ š‘– 3 ] .
ęŸ„ēœ‹č§£ęž

ęŸ„ēœ‹č§£ęž

ę ‡å‡†ē­”ę”ˆ
Please login to view
ę€č·Æåˆ†ęž
To tackle this, I’ll first restate the setup and what Ī“0 represents in GMM. We have a linear regression model y_i = α + β x_i + ε_i with E[ε_i | x_i] = 0, and three moment conditions used for GMM: - E[y_i āˆ’ α āˆ’ β x_i] = 0 - E[(y_i āˆ’ α āˆ’ β x_i) x_i] = 0 - E[(y_i āˆ’ α āˆ’ β x_i) x_i^2] = 0 Ī“0 is the matrix of expected derivatives (the Jacobian) of the moment functions g_i(Īø) with respect to the parameter vector Īø = (α, β), evaluated at the true Īø. In other words, Ī“0 = E[ āˆ‚g_i(Īø)/āˆ‚Īø ] where g_i(Īø) contains the three moments above. Step-by-step derivation of āˆ‚g_i/āˆ‚Īø for each moment: - For g1(Īø) = y_i āˆ’ α āˆ’ β x_i: āˆ‚g1/āˆ‚Ī± = āˆ’1, āˆ‚g1/āˆ‚Ī² = āˆ’x_i. - For g2(Īø) =......Login to view full explanation

ē™»å½•å³åÆęŸ„ēœ‹å®Œę•“ē­”ę”ˆ

ęˆ‘ä»¬ę”¶å½•äŗ†å…Øēƒč¶…50000é“č€ƒčÆ•åŽŸé¢˜äøŽčÆ¦ē»†č§£ęž,ēŽ°åœØē™»å½•,ē«‹å³čŽ·å¾—ē­”ę”ˆć€‚

ē±»ä¼¼é—®é¢˜

Consider the following nonlinear regression model: yi=α+eβxi+εi, Assume i.i.d. data and š”¼[εi|xi]=0. To estimate α and β by GMM, we use the two theoretical moment conditions š”¼[yiāˆ’Ī±āˆ’eβxi]=0 š”¼[(yiāˆ’Ī±āˆ’eβxi)xi]=0 To compute the variance of the GMM estimator we need the matrices Ī“0 and Φ0.

Consider the following nonlinear regression model: yi=α+eβxi+εi, Assume i.i.d. data and š”¼[εi|xi]=0. To estimate α and β by GMM, we need two moment conditions. Choose the best answer below:

Consider the following nonlinear regression model: š‘¦ š‘” = š›¼ š‘„ š‘” š›½ + šœ€ š‘” Assume i.i.d. data and š”¼ [ šœ€ š‘” | š‘„ š‘” ] = 0 . To estimate š›¼ and š›½ by GMM, we use the following moment conditions: š”¼ [ š‘¦ š‘” āˆ’ š›¼ š‘„ š‘” š›½ ] = 0 š”¼ [ ( š‘¦ š‘” āˆ’ š›¼ š‘„ š‘” š›½ ) š‘„ š‘” ] = 0 We have an i.i.d. sample with š‘‡ = 8000 observations, with āˆ‘ š‘” = 1 š‘‡ š‘„ š‘” = 2000 , āˆ‘ š‘” = 1 š‘‡ š‘„ š‘” 2 = 4000 and āˆ‘ š‘” = 1 š‘‡ š‘„ š‘” 3 = 8000 . We obtain point estimates š›¼ Ģ‚ = āˆ’ 5 and š›½ Ģ‚ = 3 . To compute the variance of the estimates, we need to estimate the matrix š›¤ 0 , š›¤ Ģ‚ 0 = [ š›¤ Ģ‚ 11 š›¤ Ģ‚ 12 š›¤ Ģ‚ 21 š›¤ Ģ‚ 22 ] Then, the value š›¤ Ģ‚ 11 is:

Consider the following nonlinear regression model: š‘¦ š‘– = š›¼ + š›½ š‘„ š‘– + šœ€ š‘– , Assume i.i.d. data and š”¼ [ šœ€ š‘– | š‘„ š‘– ] = 0 . To estimate š›¼ and š›½ by GMM, we use the two theoretical moment conditions š”¼ [ š‘¦ š‘– āˆ’ š›¼ āˆ’ š›½ š‘„ š‘– ] = 0 š”¼ [ ( š‘¦ š‘– āˆ’ š›¼ āˆ’ š›½ š‘„ š‘– ) š‘„ š‘– ] = 0 To compute the variance of the GMM estimator we need the matrices š›¤ 0 and š›· 0 .

ę›“å¤šē•™å­¦ē”Ÿå®žē”Øå·„å…·

åŠ å…„ęˆ‘ä»¬ļ¼Œē«‹å³č§£é” ęµ·é‡ēœŸé¢˜ äøŽ ē‹¬å®¶č§£ęžļ¼Œč®©å¤ä¹ åæ«äŗŗäø€ę­„ļ¼