้ข˜็›ฎ
้ข˜็›ฎ
ๅ•้กน้€‰ๆ‹ฉ้ข˜

Consider the following nonlinear regression model: ๐‘ฆ ๐‘– = ๐›ผ + ๐‘ฅ ๐‘– ๐›ฝ + ๐œ€ ๐‘– , Assume i.i.d. data and ๐”ผ [ ๐œ€ ๐‘– | ๐‘ฅ ๐‘– ] = 0 . To estimate ๐›ผ and ๐›ฝ by GMM, we use the two theoretical moment conditions ๐”ผ [ ๐‘ฆ ๐‘– โˆ’ ๐›ผ โˆ’ ๐‘ฅ ๐‘– ๐›ฝ ] = 0 ๐”ผ [ ( ๐‘ฆ ๐‘– โˆ’ ๐›ผ โˆ’ ๐‘ฅ ๐‘– ๐›ฝ ) ๐‘ฅ ๐‘– ] = 0 To compute the variance of the GMM estimator we need the matrices ๐›ค 0 and ๐›ท 0 .

้€‰้กน
A.The matrix ๐›ท 0 is: ๐›ท 0 = ๐”ผ [ โˆ’ 1 โˆ’ ๐‘ฅ ๐‘– ๐›ฝ log ( ๐‘ฅ ๐‘– ) โˆ’ ๐‘ฅ ๐‘– โˆ’ ๐‘ฅ ๐‘– ๐›ฝ + 1 log ( ๐‘ฅ ๐‘– ) ] .
B.The matrix ๐›ท 0 is: ๐›ท 0 = ๐”ผ [ 1 ๐‘ฅ ๐‘– ๐›ฝ log ( ๐‘ฅ ๐‘– ) ๐‘ฅ ๐‘– ๐‘ฅ ๐‘– ๐›ฝ + 1 log ( ๐‘ฅ ๐‘– ) ] .
C.There is not enough information to compute the matrix ๐›ท 0 .
D.The matrix ๐›ท 0 is: ๐›ท 0 = [ ๐”ผ [ ( ๐‘ฆ ๐‘– โˆ’ ๐›ผ โˆ’ ๐‘ฅ ๐‘– ๐›ฝ ) 2 ] ๐”ผ [ ( ๐‘ฆ ๐‘– โˆ’ ๐›ผ โˆ’ ๐‘ฅ ๐‘– ๐›ฝ ) 2 ๐‘ฅ ๐‘– ] ๐”ผ [ ( ๐‘ฆ ๐‘– โˆ’ ๐›ผ โˆ’ ๐‘ฅ ๐‘– ๐›ฝ ) 2 ๐‘ฅ ๐‘– ] ๐”ผ [ ( ๐‘ฆ ๐‘– โˆ’ ๐›ผ โˆ’ ๐‘ฅ ๐‘– ๐›ฝ ) 2 ๐‘ฅ ๐‘– 2 ] ] .
E.The matrix ๐›ท 0 is: ๐›ท 0 = ๐”ผ [ ๐›ผ ๐‘ฅ ๐‘– ๐›ฝ ๐‘ฅ ๐‘– ๐›ฝ ๐‘ฅ ๐‘– ๐›ฝ log ( ๐‘ฅ ๐‘– ) ] .
ๆŸฅ็œ‹่งฃๆž

ๆŸฅ็œ‹่งฃๆž

ๆ ‡ๅ‡†็ญ”ๆกˆ
Please login to view
ๆ€่ทฏๅˆ†ๆž
Let's break down what the question is asking and what each option is proposing about the matrix ฮฆ0 in the context of GMM for a nonlinear regression with moment conditions. The setup uses two theoretical moment conditions: E[ y_i โˆ’ ฮฑ โˆ’ x_i ฮฒ ] = 0 and E[ (y_i โˆ’ ฮฑ โˆ’ x_i ฮฒ) x_i ] = 0, and we need the appropriate form of ฮฆ0 to compute the variance of the GMM estimator. Option 1: The matrix ฮฆ0 is: ฮฆ0 = E[ โˆ’1 โˆ’ x_i ฮฒ log(x_i) โˆ’ x_i โˆ’ x_i ฮฒ + 1 log(x_i) ]. - This expression is trying to assemble ฮฆ0 as a vector or matrix that contains expectations involving transformations like log(x_i) and products with x_i or ฮฒ. However, ฮฆ0 in the GMM context is typically the variance (or the expected outer product) of the moment conditions and their derivatives with respect to parameters, evaluated at the true parameter values. A single row vector with terms like โˆ’1, โˆ’ x_i ฮฒ log(x_i), etc., does not align with the standard construction of ฮฆ0 for this model, which would involve E[ g_i g_i' ] or E[ โˆ‚g_i/โˆ‚ฮธ ... ] structures. This option appears to mix components in a way that does not correspond to the conventional ฮฆ0 form, and the inclusion of log(x_i) in this mixed fashion is inappropriate unless motivated......Login to view full explanation

็™ปๅฝ•ๅณๅฏๆŸฅ็œ‹ๅฎŒๆ•ด็ญ”ๆกˆ

ๆˆ‘ไปฌๆ”ถๅฝ•ไบ†ๅ…จ็ƒ่ถ…50000้“่€ƒ่ฏ•ๅŽŸ้ข˜ไธŽ่ฏฆ็ป†่งฃๆž,็Žฐๅœจ็™ปๅฝ•,็ซ‹ๅณ่Žทๅพ—็ญ”ๆกˆใ€‚

็ฑปไผผ้—ฎ้ข˜

Consider the following nonlinear regression model: yt=ฮฑx ฮฒ t +ฮตt Assume i.i.d. data and ๐”ผ[ฮตt|xt]=0. To estimate ฮฑ and ฮฒ by GMM, we use the following moment conditions: ๐”ผ[ytโˆ’ฮฑx ฮฒ t ]=0 ๐”ผ[(ytโˆ’ฮฑx ฮฒ t )xt]=0 To compute the variance of the estimates, we need to estimate the matrices ฮ“0 and ฮฆ0.

Consider the following nonlinear regression model: yi=ฮฑ+x ฮฒ i +ฮตi, Assume i.i.d. data and ๐”ผ[ฮตi|xi]=0. To estimate ฮฑ and ฮฒ by GMM, we use the two theoretical moment conditions ๐”ผ[yiโˆ’ฮฑโˆ’x ฮฒ i ]=0 ๐”ผ[(yiโˆ’ฮฑโˆ’x ฮฒ i )xi]=0 To compute the variance of the GMM estimator we need the matrices ฮ“0 and ฮฆ0.

Consider the following nonlinear regression model: ๐‘ฆ ๐‘– = ๐›ผ + ๐›ฝ ๐‘ฅ ๐‘– + ๐œ€ ๐‘– , Assume i.i.d. data and ๐”ผ [ ๐œ€ ๐‘– | ๐‘ฅ ๐‘– ] = 0 . To estimate ๐›ผ and ๐›ฝ by GMM, we need at least two moment conditions, and we use ๐”ผ [ ๐‘ฆ ๐‘– โˆ’ ๐›ผ โˆ’ ๐›ฝ ๐‘ฅ ๐‘– ] = 0 ๐”ผ [ ( ๐‘ฆ ๐‘– โˆ’ ๐›ผ โˆ’ ๐›ฝ ๐‘ฅ ๐‘– ) ๐‘ฅ ๐‘– ๐›ฝ ๐‘ฅ ๐‘– โˆ’ 1 ] = 0 Chose the correct answer below.

Consider the following nonlinear regression model: yt=ฮฑx ฮฒ t +ฮตt Assume i.i.d. data and ๐”ผ[ฮตt|xt]=0. To estimate ฮฑ and ฮฒ by GMM, we chose among the following moment conditions: ๐”ผ[ytโˆ’ฮฑx ฮฒ t ]=0 ๐”ผ[(ytโˆ’ฮฑx ฮฒ t )xt]=0 ๐”ผ[(ytโˆ’ฮฑx ฮฒ t ) 1 xt ]=0 Choose the most appropriate answer below:

ๆ›ดๅคš็•™ๅญฆ็”Ÿๅฎž็”จๅทฅๅ…ท

ๅŠ ๅ…ฅๆˆ‘ไปฌ๏ผŒ็ซ‹ๅณ่งฃ้” ๆตท้‡็œŸ้ข˜ ไธŽ ็‹ฌๅฎถ่งฃๆž๏ผŒ่ฎฉๅคไน ๅฟซไบบไธ€ๆญฅ๏ผ