้ข˜็›ฎ
้ข˜็›ฎ

BU.232.630.W4.SP25 sample_quiz_2

ๅ•้กน้€‰ๆ‹ฉ้ข˜

Consider the following nonlinear regression model: ๐‘ฆ ๐‘– = ๐›ผ + ๐‘ฅ ๐‘– ๐›ฝ + ๐œ€ ๐‘– , Assume i.i.d. data and ๐”ผ [ ๐œ€ ๐‘– | ๐‘ฅ ๐‘– ] = 0 . To estimate ๐›ผ and ๐›ฝ by GMM, we use the two theoretical moment conditions ๐”ผ [ ๐‘ฆ ๐‘– โˆ’ ๐›ผ โˆ’ ๐‘ฅ ๐‘– ๐›ฝ ] = 0 ๐”ผ [ ( ๐‘ฆ ๐‘– โˆ’ ๐›ผ โˆ’ ๐‘ฅ ๐‘– ๐›ฝ ) ๐‘ฅ ๐‘– ] = 0 To compute the variance of the GMM estimator we need the matrices ๐›ค 0 and ๐›ท 0 .

้€‰้กน
A.The matrix ๐›ท 0 is: ๐›ท 0 = [ ๐”ผ [ ( ๐‘ฆ ๐‘– โˆ’ ๐›ผ โˆ’ ๐‘ฅ ๐‘– ๐›ฝ ) 2 ] ๐”ผ [ ( ๐‘ฆ ๐‘– โˆ’ ๐›ผ โˆ’ ๐‘ฅ ๐‘– ๐›ฝ ) 2 ๐‘ฅ ๐‘– ] ๐”ผ [ ( ๐‘ฆ ๐‘– โˆ’ ๐›ผ โˆ’ ๐‘ฅ ๐‘– ๐›ฝ ) 2 ๐‘ฅ ๐‘– ] ๐”ผ [ ( ๐‘ฆ ๐‘– โˆ’ ๐›ผ โˆ’ ๐‘ฅ ๐‘– ๐›ฝ ) 2 ๐‘ฅ ๐‘– 2 ] ] .
B.The matrix ๐›ท 0 is: ๐›ท 0 = ๐”ผ [ ๐›ผ ๐‘ฅ ๐‘– ๐›ฝ ๐‘ฅ ๐‘– ๐›ฝ ๐‘ฅ ๐‘– ๐›ฝ log ( ๐‘ฅ ๐‘– ) ] .
C.The matrix ๐›ท 0 is: ๐›ท 0 = ๐”ผ [ 1 ๐‘ฅ ๐‘– ๐›ฝ log ( ๐‘ฅ ๐‘– ) ๐‘ฅ ๐‘– ๐‘ฅ ๐‘– ๐›ฝ + 1 log ( ๐‘ฅ ๐‘– ) ] .
D.There is not enough information to compute the matrix ๐›ท 0 .
E.The matrix ๐›ท 0 is: ๐›ท 0 = ๐”ผ [ โˆ’ 1 โˆ’ ๐‘ฅ ๐‘– ๐›ฝ log ( ๐‘ฅ ๐‘– ) โˆ’ ๐‘ฅ ๐‘– โˆ’ ๐‘ฅ ๐‘– ๐›ฝ + 1 log ( ๐‘ฅ ๐‘– ) ] .
ๆŸฅ็œ‹่งฃๆž

ๆŸฅ็œ‹่งฃๆž

ๆ ‡ๅ‡†็ญ”ๆกˆ
Please login to view
ๆ€่ทฏๅˆ†ๆž
To approach this question, I start by identifying the moment conditions used for a nonlinear regression in a GMM setup and then determine the correct form of the variance-covariance matrix of the moment conditions. Option 1 presents the candidate for ฮฆ0 as a 2x2 matrix with elements built from the second moments of the moment conditions themselves. Remember that the moment conditions here are g_i = [ y_i โˆ’ ฮฑ โˆ’ x_i ฮฒ , (y_i โˆ’ ฮฑ โˆ’ x_i ฮฒ) x_i ]. The matrix ฮฆ0 is defined as E[ g_i g_i^T ], which yields: - The (1,1) entry: E[ (y_i โˆ’ ฮฑ โˆ’ x_i ฮฒ)^2 ]. - The (1,2) entry (and by symmetry the (2......Login to view full explanation

็™ปๅฝ•ๅณๅฏๆŸฅ็œ‹ๅฎŒๆ•ด็ญ”ๆกˆ

ๆˆ‘ไปฌๆ”ถๅฝ•ไบ†ๅ…จ็ƒ่ถ…50000้“่€ƒ่ฏ•ๅŽŸ้ข˜ไธŽ่ฏฆ็ป†่งฃๆž,็Žฐๅœจ็™ปๅฝ•,็ซ‹ๅณ่Žทๅพ—็ญ”ๆกˆใ€‚

็ฑปไผผ้—ฎ้ข˜

Consider the following nonlinear regression model: yt=ฮฑx ฮฒ t +ฮตt Assume i.i.d. data and ๐”ผ[ฮตt|xt]=0. To estimate ฮฑ and ฮฒ by GMM, we use the following moment conditions: ๐”ผ[ytโˆ’ฮฑx ฮฒ t ]=0 ๐”ผ[(ytโˆ’ฮฑx ฮฒ t )xt]=0 To compute the variance of the estimates, we need to estimate the matrices ฮ“0 and ฮฆ0.

Consider the following nonlinear regression model: yi=ฮฑ+x ฮฒ i +ฮตi, Assume i.i.d. data and ๐”ผ[ฮตi|xi]=0. To estimate ฮฑ and ฮฒ by GMM, we use the two theoretical moment conditions ๐”ผ[yiโˆ’ฮฑโˆ’x ฮฒ i ]=0 ๐”ผ[(yiโˆ’ฮฑโˆ’x ฮฒ i )xi]=0 To compute the variance of the GMM estimator we need the matrices ฮ“0 and ฮฆ0.

Consider the following nonlinear regression model: ๐‘ฆ ๐‘– = ๐›ผ + ๐›ฝ ๐‘ฅ ๐‘– + ๐œ€ ๐‘– , Assume i.i.d. data and ๐”ผ [ ๐œ€ ๐‘– | ๐‘ฅ ๐‘– ] = 0 . To estimate ๐›ผ and ๐›ฝ by GMM, we need at least two moment conditions, and we use ๐”ผ [ ๐‘ฆ ๐‘– โˆ’ ๐›ผ โˆ’ ๐›ฝ ๐‘ฅ ๐‘– ] = 0 ๐”ผ [ ( ๐‘ฆ ๐‘– โˆ’ ๐›ผ โˆ’ ๐›ฝ ๐‘ฅ ๐‘– ) ๐‘ฅ ๐‘– ๐›ฝ ๐‘ฅ ๐‘– โˆ’ 1 ] = 0 Chose the correct answer below.

Consider the following nonlinear regression model: yt=ฮฑx ฮฒ t +ฮตt Assume i.i.d. data and ๐”ผ[ฮตt|xt]=0. To estimate ฮฑ and ฮฒ by GMM, we chose among the following moment conditions: ๐”ผ[ytโˆ’ฮฑx ฮฒ t ]=0 ๐”ผ[(ytโˆ’ฮฑx ฮฒ t )xt]=0 ๐”ผ[(ytโˆ’ฮฑx ฮฒ t ) 1 xt ]=0 Choose the most appropriate answer below:

ๆ›ดๅคš็•™ๅญฆ็”Ÿๅฎž็”จๅทฅๅ…ท

ๅŠ ๅ…ฅๆˆ‘ไปฌ๏ผŒ็ซ‹ๅณ่งฃ้” ๆตท้‡็œŸ้ข˜ ไธŽ ็‹ฌๅฎถ่งฃๆž๏ผŒ่ฎฉๅคไน ๅฟซไบบไธ€ๆญฅ๏ผ