้ข็ฎ
BU.232.630.W4.SP25 sample_quiz_2
ๅ้กน้ๆฉ้ข
Consider the following nonlinear regression model: ๐ฆ ๐ = ๐ผ + ๐ฅ ๐ ๐ฝ + ๐ ๐ , Assume i.i.d. data and ๐ผ [ ๐ ๐ | ๐ฅ ๐ ] = 0 . To estimate ๐ผ and ๐ฝ by GMM, we use the two theoretical moment conditions ๐ผ [ ๐ฆ ๐ โ ๐ผ โ ๐ฅ ๐ ๐ฝ ] = 0 ๐ผ [ ( ๐ฆ ๐ โ ๐ผ โ ๐ฅ ๐ ๐ฝ ) ๐ฅ ๐ ] = 0 To compute the variance of the GMM estimator we need the matrices ๐ค 0 and ๐ท 0 .
้้กน
A.The matrix
๐ท
0
is:
๐ท
0
=
[
๐ผ
[
(
๐ฆ
๐
โ
๐ผ
โ
๐ฅ
๐
๐ฝ
)
2
]
๐ผ
[
(
๐ฆ
๐
โ
๐ผ
โ
๐ฅ
๐
๐ฝ
)
2
๐ฅ
๐
]
๐ผ
[
(
๐ฆ
๐
โ
๐ผ
โ
๐ฅ
๐
๐ฝ
)
2
๐ฅ
๐
]
๐ผ
[
(
๐ฆ
๐
โ
๐ผ
โ
๐ฅ
๐
๐ฝ
)
2
๐ฅ
๐
2
]
]
.
B.The matrix
๐ท
0
is:
๐ท
0
=
๐ผ
[
๐ผ
๐ฅ
๐
๐ฝ
๐ฅ
๐
๐ฝ
๐ฅ
๐
๐ฝ
log
(
๐ฅ
๐
)
]
.
C.The matrix
๐ท
0
is:
๐ท
0
=
๐ผ
[
1
๐ฅ
๐
๐ฝ
log
(
๐ฅ
๐
)
๐ฅ
๐
๐ฅ
๐
๐ฝ
+
1
log
(
๐ฅ
๐
)
]
.
D.There is not enough information to compute the matrix
๐ท
0
.
E.The matrix
๐ท
0
is:
๐ท
0
=
๐ผ
[
โ
1
โ
๐ฅ
๐
๐ฝ
log
(
๐ฅ
๐
)
โ
๐ฅ
๐
โ
๐ฅ
๐
๐ฝ
+
1
log
(
๐ฅ
๐
)
]
.
ๆฅ็่งฃๆ
ๆ ๅ็ญๆก
Please login to view
ๆ่ทฏๅๆ
To approach this question, I start by identifying the moment conditions used for a nonlinear regression in a GMM setup and then determine the correct form of the variance-covariance matrix of the moment conditions.
Option 1 presents the candidate for ฮฆ0 as a 2x2 matrix with elements built from the second moments of the moment conditions themselves. Remember that the moment conditions here are g_i = [ y_i โ ฮฑ โ x_i ฮฒ , (y_i โ ฮฑ โ x_i ฮฒ) x_i ]. The matrix ฮฆ0 is defined as E[ g_i g_i^T ], which yields:
- The (1,1) entry: E[ (y_i โ ฮฑ โ x_i ฮฒ)^2 ].
- The (1,2) entry (and by symmetry the (2......Login to view full explanation็ปๅฝๅณๅฏๆฅ็ๅฎๆด็ญๆก
ๆไปฌๆถๅฝไบๅ จ็่ถ 50000้่่ฏๅ้ขไธ่ฏฆ็ป่งฃๆ,็ฐๅจ็ปๅฝ,็ซๅณ่ทๅพ็ญๆกใ
็ฑปไผผ้ฎ้ข
Consider the following nonlinear regression model: yt=ฮฑx ฮฒ t +ฮตt Assume i.i.d. data and ๐ผ[ฮตt|xt]=0. To estimate ฮฑ and ฮฒ by GMM, we use the following moment conditions: ๐ผ[ytโฮฑx ฮฒ t ]=0 ๐ผ[(ytโฮฑx ฮฒ t )xt]=0 To compute the variance of the estimates, we need to estimate the matrices ฮ0 and ฮฆ0.
Consider the following nonlinear regression model: yi=ฮฑ+x ฮฒ i +ฮตi, Assume i.i.d. data and ๐ผ[ฮตi|xi]=0. To estimate ฮฑ and ฮฒ by GMM, we use the two theoretical moment conditions ๐ผ[yiโฮฑโx ฮฒ i ]=0 ๐ผ[(yiโฮฑโx ฮฒ i )xi]=0 To compute the variance of the GMM estimator we need the matrices ฮ0 and ฮฆ0.
Consider the following nonlinear regression model: ๐ฆ ๐ = ๐ผ + ๐ฝ ๐ฅ ๐ + ๐ ๐ , Assume i.i.d. data and ๐ผ [ ๐ ๐ | ๐ฅ ๐ ] = 0 . To estimate ๐ผ and ๐ฝ by GMM, we need at least two moment conditions, and we use ๐ผ [ ๐ฆ ๐ โ ๐ผ โ ๐ฝ ๐ฅ ๐ ] = 0 ๐ผ [ ( ๐ฆ ๐ โ ๐ผ โ ๐ฝ ๐ฅ ๐ ) ๐ฅ ๐ ๐ฝ ๐ฅ ๐ โ 1 ] = 0 Chose the correct answer below.
Consider the following nonlinear regression model: yt=ฮฑx ฮฒ t +ฮตt Assume i.i.d. data and ๐ผ[ฮตt|xt]=0. To estimate ฮฑ and ฮฒ by GMM, we chose among the following moment conditions: ๐ผ[ytโฮฑx ฮฒ t ]=0 ๐ผ[(ytโฮฑx ฮฒ t )xt]=0 ๐ผ[(ytโฮฑx ฮฒ t ) 1 xt ]=0 Choose the most appropriate answer below:
ๆดๅค็ๅญฆ็ๅฎ็จๅทฅๅ ท
ๅธๆไฝ ็ๅญฆไน ๅๅพๆด็ฎๅ
ๅ ๅ ฅๆไปฌ๏ผ็ซๅณ่งฃ้ ๆตท้็้ข ไธ ็ฌๅฎถ่งฃๆ๏ผ่ฎฉๅคไน ๅฟซไบบไธๆญฅ๏ผ