้ข็ฎ
BU.232.630.W1.SP25 Quiz 3
ๅ้กน้ๆฉ้ข
Consider the following GARCH(1,1) model for the volatility of asset returns ๐ ๐ก : ๐ ๐ก = ๐ผ + ๐ฝ ๐ ๐ก โ 1 + ๐ ๐ก ๐ ๐ก = โ ๐ก ๐ข ๐ก โ ๐ก = ๐ + ๐ฟ โ ๐ก โ 1 + ๐ ๐ ๐ก โ 1 2 ๐ผ ๐ก โ 1 ( ๐ข ๐ก ) = 0 ๐ผ ๐ก โ 1 ( ๐ข ๐ก 2 ) = 1 The Maximum Likelihood estimates and standard errors of the parameters are in the following table. Estimates Std. error ๐ผ 0.0911 0.1233 ๐ฝ 0.9222 0.0655 ๐ 0.0112 0.1212 ๐ฟ 0.9132 0.2231 ๐ 0.0611 0.0013 Using this information compute the test statistic for the null hypothesis ๐ป 0 : ๐ผ = 0.2 . (Please round the result to the 4th decimal place.)
้้กน
A.โ
0.8832
.
B.โ
7.1631
.
C.0.7388
.
D.5.9923
.
E.There is not enough information to compute the value of the test statistic.
ๆฅ็่งฃๆ
ๆ ๅ็ญๆก
Please login to view
ๆ่ทฏๅๆ
Question restatement: Given a GARCH(1,1) model and ML estimates with standard errors for the parameters, compute the test statistic for H0: ฮฑ = 0.2 (rounded to 4 decimals).
Option 1: โ0.8832.
- Calculation: The standard z statistic is z = (ฮฑฬ โ 0.2) / SE(ฮฑฬ). Here ฮฑฬ = 0.0911 and SE(ฮฑฬ) = 0.1233. So z = (0.0911 โ 0.2) / 0.1233 = (โ0.1089) / 0.1233 โ โ0.8832. This matches the shown value and follows the standard approach of testing a single paramete......Login to view full explanation็ปๅฝๅณๅฏๆฅ็ๅฎๆด็ญๆก
ๆไปฌๆถๅฝไบๅ จ็่ถ 50000้่่ฏๅ้ขไธ่ฏฆ็ป่งฃๆ,็ฐๅจ็ปๅฝ,็ซๅณ่ทๅพ็ญๆกใ
็ฑปไผผ้ฎ้ข
On Tuesday, you calculated the volatility of Wednesday as 5% using the GARCH model, which information will make the Thursday volatility become even higher?
When estimating the GARCH model, an intermediate step is to predict tomorrow's return.
When estimating the GARCH model, an intermediate step is to predict tomorrow's return.
On Tuesday, you calculated the volatility of Wednesday as 5% using the GARCH model, which information will make the Thursday volatility become even higher?
ๆดๅค็ๅญฆ็ๅฎ็จๅทฅๅ ท
ๅธๆไฝ ็ๅญฆไน ๅๅพๆด็ฎๅ
ๅ ๅ ฅๆไปฌ๏ผ็ซๅณ่งฃ้ ๆตท้็้ข ไธ ็ฌๅฎถ่งฃๆ๏ผ่ฎฉๅคไน ๅฟซไบบไธๆญฅ๏ผ