้ข็ฎ
ๅ้กน้ๆฉ้ข
Consider the following GARCH(1,1) model for the volatility of asset returns ๐ ๐ก : ๐ ๐ก = ๐ผ + ๐ฝ ๐ ๐ก โ 1 + ๐ ๐ก ๐ ๐ก = โ ๐ก ๐ข ๐ก โ ๐ก = ๐ + ๐ฟ โ ๐ก โ 1 + ๐ ๐ ๐ก โ 1 2 ๐ผ ๐ก โ 1 ( ๐ข ๐ก ) = 0 ๐ผ ๐ก โ 1 ( ๐ข ๐ก 2 ) = 1 You estimated the following values for the parameters Estimates Parameters ๐ผ ๐ฝ ๐ ๐ฟ ๐ Estimates 0.1911 0.9722 0.0011 0.9321 0.0821 Assume that the last 2 observations of the return process are ๐ ๐ = 0.07 and ๐ ๐ โ 1 = 0.03 , and the value of the conditional variance in the last period of your sample is โ ๐ = 0.55 . Then what is the predicted value of the conditional variance โ ๐ + 1 in period ๐ + 1 ?
้้กน
A.There is not enough data to compute
โ
ฬ
๐
+
1
.
B.โ
ฬ
๐
+
1
=
0.74162
C.โ
ฬ
๐
+
1
=
0.55
D.โ
ฬ
๐
+
1
=
0.264575
E.โ
ฬ
๐
+
1
=
0.0049
F.โ
ฬ
๐
+
1
=
0.515609
ๆฅ็่งฃๆ
ๆ ๅ็ญๆก
Please login to view
ๆ่ทฏๅๆ
We begin by restating the core setup and the numeric inputs so the student can follow each step clearly. The model is a GARCH(1,1) type update for the conditional variance h_t, with the given parameter estimates and the last observed returns r_T and r_{T-1}, along with the last periodโs conditional variance h_T. The question asks for the one-step-ahead forecast hฬ_{T+1} given this information. The provided answer options are a mix of numerical values; our task is to work through the calculation logic and see how each option aligns with the computed result.
Step 1: compute the innovation ฮต_T from the return equation. The return equation is written in the prompt with r_t = ฮฑ + ฮฒ r_{t-1} โ 1 + ฮต_t. This implies ฮต_T = r_T โ ฮฑ โ ฮฒ r_{Tโ1} + 1. Plugging in r_T = 0.07, r_{Tโ1} = 0.03, ฮฑ = 0.1911, ฮฒ = 0.9722:
- Compute ฮฑ + ฮฒ r_{Tโ1} = 0.1911 + 0.9722ร0.03 โ 0.1911 + 0.029166 โ 0.220266.
- Then ฮต_T = 0.07 โ 0.220266 + 1 โ 0.849734.
This ฮต_T will be used in the h_{T+1} update term involving ฮต_T (the exact coefficient depends on the precise form of the h_t update provided in the prompt). The value is positive and relatively large in magnitude, which tends to push h_{T+1} upward via the ฯ ฮต_T term if such a term is present.
Step 2: recall the h_t update structure implied by the prompt. The prompt contains a somewhat garbled expression for h_t, but the intended (typical) structure is a one-step-ahead variance that dep......Login to view full explanation็ปๅฝๅณๅฏๆฅ็ๅฎๆด็ญๆก
ๆไปฌๆถๅฝไบๅ จ็่ถ 50000้่่ฏๅ้ขไธ่ฏฆ็ป่งฃๆ,็ฐๅจ็ปๅฝ,็ซๅณ่ทๅพ็ญๆกใ
็ฑปไผผ้ฎ้ข
According to the GARCH model ฯTHURSDAY2=ฯ+ฮฑRBLANK12+ฮฒฯBLANK22\sigma_{THURSDAY}^2 = \omega + \alpha R_{BLANK1}^2 +\beta \sigma_{BLANK2}^2 (Hint: fill in day of the week like Monday, Tuesday...) BLANK1:[Fill in the blank], BLANK2:[Fill in the blank],
Consider the following GARCH(1,1) model for the volatility of asset returns ๐ ๐ก : ๐ ๐ก = ๐ ๐ก ๐ ๐ก = โ ๐ก ๐ข ๐ก โ ๐ก = ๐ + ๐ฟ โ ๐ก โ 1 + ๐ ๐ ๐ก โ 1 2 ๐ผ ๐ก โ 1 ( ๐ข ๐ก ) = 0 ๐ผ ๐ก โ 1 ( ๐ข ๐ก 2 ) = 1 You estimated the following values for the parameters Parameters Estimates MLE ๐ 0.0112 ๐ฟ 0.932 ๐ 0.0811 and the variance-covariance matrix is ๐ ( ๐ ฬ ) = [ 0.0012 โ 0.012 0.001 โ 0.012 0.102 โ 0.003 0.001 โ 0.003 0.003 ] Assume the last observation in your sample has โ ๐ = 1.5056 . What is the value of the conditional variance ๐ ๐ โ 1 ( ๐ ๐ ) ?
Consider the following GARCH(1,1) model for the volatility of asset returns ๐ ๐ก : ๐ ๐ก = ๐ผ + ๐ฝ ๐ ๐ก โ 1 + ๐ ๐ก ๐ ๐ก = โ ๐ก ๐ข ๐ก โ ๐ก = ๐ + ๐ฟ โ ๐ก โ 1 + ๐ ๐ ๐ก โ 1 2 ๐ผ ๐ก โ 1 ( ๐ข ๐ก ) = 0 ๐ผ ๐ก โ 1 ( ๐ข ๐ก 2 ) = 1 You estimated the following values for the parameters ๐ผ ๐ฝ ๐ ๐ฟ ๐ 0.5911 0.9222 0.0112 0.9132 0.0611 Assume that the last 2 observations of the return process are ๐ ๐ = 0.04 and ๐ ๐ โ 1 = 0.05 , and the value of the conditional variance in the last period of your sample is โ ๐ = 0.5 . Then what is the predicted value of the conditional variance โ ๐ + 1 in period ๐ + 1 ?
Consider the following GARCH(1,1) model for the volatility of asset returns ๐ ๐ก : ๐ ๐ก = ๐ผ + ๐ฝ ๐ ๐ก โ 1 + ๐ ๐ก ๐ ๐ก = โ ๐ก ๐ข ๐ก โ ๐ก = ๐ + ๐ฟ โ ๐ก โ 1 + ๐ ๐ ๐ก โ 1 2 ๐ผ ๐ก โ 1 ( ๐ข ๐ก ) = 0 ๐ผ ๐ก โ 1 ( ๐ข ๐ก 2 ) = 1 You estimated the following values for the parameters ๐ผ ๐ฝ ๐ ๐ฟ ๐ 0.5911 0.9222 0.0112 0.9132 0.0611 Assume that the last 2 observations of the return process are ๐ ๐ = 0.04 and ๐ ๐ โ 1 = 0.05 , and the value of the conditional variance in the last period of your sample is โ ๐ = 0.5 . Then what is the predicted value of the conditional variance โ ๐ + 1 in period ๐ + 1 ?
ๆดๅค็ๅญฆ็ๅฎ็จๅทฅๅ ท
ๅธๆไฝ ็ๅญฆไน ๅๅพๆด็ฎๅ
ๅ ๅ ฅๆไปฌ๏ผ็ซๅณ่งฃ้ ๆตท้็้ข ไธ ็ฌๅฎถ่งฃๆ๏ผ่ฎฉๅคไน ๅฟซไบบไธๆญฅ๏ผ