้ข˜็›ฎ
้ข˜็›ฎ
ๅ•้กน้€‰ๆ‹ฉ้ข˜

Consider the following GARCH(1,1) model for the volatility of asset returns ๐‘Ÿ ๐‘ก : ๐‘Ÿ ๐‘ก = ๐›ผ + ๐›ฝ ๐‘Ÿ ๐‘ก โˆ’ 1 + ๐œ€ ๐‘ก ๐œ€ ๐‘ก = โ„Ž ๐‘ก ๐‘ข ๐‘ก โ„Ž ๐‘ก = ๐œ‡ + ๐›ฟ โ„Ž ๐‘ก โˆ’ 1 + ๐œ™ ๐œ€ ๐‘ก โˆ’ 1 2 ๐”ผ ๐‘ก โˆ’ 1 ( ๐‘ข ๐‘ก ) = 0 ๐”ผ ๐‘ก โˆ’ 1 ( ๐‘ข ๐‘ก 2 ) = 1 You estimated the following values for the parameters Estimates Parameters ๐›ผ ๐›ฝ ๐œ‡ ๐›ฟ ๐œ™ Estimates 0.1911 0.9722 0.0011 0.9321 0.0821 Assume that the last 2 observations of the return process are ๐‘Ÿ ๐‘‡ = 0.07 and ๐‘Ÿ ๐‘‡ โˆ’ 1 = 0.03 , and the value of the conditional variance in the last period of your sample is โ„Ž ๐‘‡ = 0.55 . Then what is the predicted value of the conditional variance โ„Ž ๐‘‡ + 1 in period ๐‘‡ + 1 ?

้€‰้กน
A.There is not enough data to compute โ„Ž ฬ‚ ๐‘‡ + 1 .
B.โ„Ž ฬ‚ ๐‘‡ + 1 = 0.74162
C.โ„Ž ฬ‚ ๐‘‡ + 1 = 0.55
D.โ„Ž ฬ‚ ๐‘‡ + 1 = 0.264575
E.โ„Ž ฬ‚ ๐‘‡ + 1 = 0.0049
F.โ„Ž ฬ‚ ๐‘‡ + 1 = 0.515609
ๆŸฅ็œ‹่งฃๆž

ๆŸฅ็œ‹่งฃๆž

ๆ ‡ๅ‡†็ญ”ๆกˆ
Please login to view
ๆ€่ทฏๅˆ†ๆž
We begin by restating the core setup and the numeric inputs so the student can follow each step clearly. The model is a GARCH(1,1) type update for the conditional variance h_t, with the given parameter estimates and the last observed returns r_T and r_{T-1}, along with the last periodโ€™s conditional variance h_T. The question asks for the one-step-ahead forecast hฬ‚_{T+1} given this information. The provided answer options are a mix of numerical values; our task is to work through the calculation logic and see how each option aligns with the computed result. Step 1: compute the innovation ฮต_T from the return equation. The return equation is written in the prompt with r_t = ฮฑ + ฮฒ r_{t-1} โˆ’ 1 + ฮต_t. This implies ฮต_T = r_T โˆ’ ฮฑ โˆ’ ฮฒ r_{Tโˆ’1} + 1. Plugging in r_T = 0.07, r_{Tโˆ’1} = 0.03, ฮฑ = 0.1911, ฮฒ = 0.9722: - Compute ฮฑ + ฮฒ r_{Tโˆ’1} = 0.1911 + 0.9722ร—0.03 โ‰ˆ 0.1911 + 0.029166 โ‰ˆ 0.220266. - Then ฮต_T = 0.07 โˆ’ 0.220266 + 1 โ‰ˆ 0.849734. This ฮต_T will be used in the h_{T+1} update term involving ฮต_T (the exact coefficient depends on the precise form of the h_t update provided in the prompt). The value is positive and relatively large in magnitude, which tends to push h_{T+1} upward via the ฯ† ฮต_T term if such a term is present. Step 2: recall the h_t update structure implied by the prompt. The prompt contains a somewhat garbled expression for h_t, but the intended (typical) structure is a one-step-ahead variance that dep......Login to view full explanation

็™ปๅฝ•ๅณๅฏๆŸฅ็œ‹ๅฎŒๆ•ด็ญ”ๆกˆ

ๆˆ‘ไปฌๆ”ถๅฝ•ไบ†ๅ…จ็ƒ่ถ…50000้“่€ƒ่ฏ•ๅŽŸ้ข˜ไธŽ่ฏฆ็ป†่งฃๆž,็Žฐๅœจ็™ปๅฝ•,็ซ‹ๅณ่Žทๅพ—็ญ”ๆกˆใ€‚

็ฑปไผผ้—ฎ้ข˜

According to the GARCH model ฯƒTHURSDAY2=ฯ‰+ฮฑRBLANK12+ฮฒฯƒBLANK22\sigma_{THURSDAY}^2 = \omega + \alpha R_{BLANK1}^2 +\beta \sigma_{BLANK2}^2 (Hint: fill in day of the week like Monday, Tuesday...) BLANK1:[Fill in the blank], BLANK2:[Fill in the blank],

Consider the following GARCH(1,1) model for the volatility of asset returns ๐‘Ÿ ๐‘ก : ๐‘Ÿ ๐‘ก = ๐œ€ ๐‘ก ๐œ€ ๐‘ก = โ„Ž ๐‘ก ๐‘ข ๐‘ก โ„Ž ๐‘ก = ๐œ‡ + ๐›ฟ โ„Ž ๐‘ก โˆ’ 1 + ๐œ™ ๐œ€ ๐‘ก โˆ’ 1 2 ๐”ผ ๐‘ก โˆ’ 1 ( ๐‘ข ๐‘ก ) = 0 ๐”ผ ๐‘ก โˆ’ 1 ( ๐‘ข ๐‘ก 2 ) = 1 You estimated the following values for the parameters Parameters Estimates MLE ๐œ‡ 0.0112 ๐›ฟ 0.932 ๐œ™ 0.0811 and the variance-covariance matrix is ๐‘‰ ( ๐œƒ ฬ‚ ) = [ 0.0012 โˆ’ 0.012 0.001 โˆ’ 0.012 0.102 โˆ’ 0.003 0.001 โˆ’ 0.003 0.003 ] Assume the last observation in your sample has โ„Ž ๐‘‡ = 1.5056 . What is the value of the conditional variance ๐‘‰ ๐‘‡ โˆ’ 1 ( ๐‘Ÿ ๐‘‡ ) ?

Consider the following GARCH(1,1) model for the volatility of asset returns ๐‘Ÿ ๐‘ก : ๐‘Ÿ ๐‘ก = ๐›ผ + ๐›ฝ ๐‘Ÿ ๐‘ก โˆ’ 1 + ๐œ€ ๐‘ก ๐œ€ ๐‘ก = โ„Ž ๐‘ก ๐‘ข ๐‘ก โ„Ž ๐‘ก = ๐œ‡ + ๐›ฟ โ„Ž ๐‘ก โˆ’ 1 + ๐œ™ ๐œ€ ๐‘ก โˆ’ 1 2 ๐”ผ ๐‘ก โˆ’ 1 ( ๐‘ข ๐‘ก ) = 0 ๐”ผ ๐‘ก โˆ’ 1 ( ๐‘ข ๐‘ก 2 ) = 1 You estimated the following values for the parameters ๐›ผ ๐›ฝ ๐œ‡ ๐›ฟ ๐œ™ 0.5911 0.9222 0.0112 0.9132 0.0611 Assume that the last 2 observations of the return process are ๐‘Ÿ ๐‘‡ = 0.04 and ๐‘Ÿ ๐‘‡ โˆ’ 1 = 0.05 , and the value of the conditional variance in the last period of your sample is โ„Ž ๐‘‡ = 0.5 . Then what is the predicted value of the conditional variance โ„Ž ๐‘‡ + 1 in period ๐‘‡ + 1 ?

Consider the following GARCH(1,1) model for the volatility of asset returns ๐‘Ÿ ๐‘ก : ๐‘Ÿ ๐‘ก = ๐›ผ + ๐›ฝ ๐‘Ÿ ๐‘ก โˆ’ 1 + ๐œ€ ๐‘ก ๐œ€ ๐‘ก = โ„Ž ๐‘ก ๐‘ข ๐‘ก โ„Ž ๐‘ก = ๐œ‡ + ๐›ฟ โ„Ž ๐‘ก โˆ’ 1 + ๐œ™ ๐œ€ ๐‘ก โˆ’ 1 2 ๐”ผ ๐‘ก โˆ’ 1 ( ๐‘ข ๐‘ก ) = 0 ๐”ผ ๐‘ก โˆ’ 1 ( ๐‘ข ๐‘ก 2 ) = 1 You estimated the following values for the parameters ๐›ผ ๐›ฝ ๐œ‡ ๐›ฟ ๐œ™ 0.5911 0.9222 0.0112 0.9132 0.0611 Assume that the last 2 observations of the return process are ๐‘Ÿ ๐‘‡ = 0.04 and ๐‘Ÿ ๐‘‡ โˆ’ 1 = 0.05 , and the value of the conditional variance in the last period of your sample is โ„Ž ๐‘‡ = 0.5 . Then what is the predicted value of the conditional variance โ„Ž ๐‘‡ + 1 in period ๐‘‡ + 1 ?

ๆ›ดๅคš็•™ๅญฆ็”Ÿๅฎž็”จๅทฅๅ…ท

ๅŠ ๅ…ฅๆˆ‘ไปฌ๏ผŒ็ซ‹ๅณ่งฃ้” ๆตท้‡็œŸ้ข˜ ไธŽ ็‹ฌๅฎถ่งฃๆž๏ผŒ่ฎฉๅคไน ๅฟซไบบไธ€ๆญฅ๏ผ