้ข˜็›ฎ
้ข˜็›ฎ
ๅ•้กน้€‰ๆ‹ฉ้ข˜

Consider the following GARCH(1,1) model for the volatility of asset returns ๐‘Ÿ ๐‘ก : ๐‘Ÿ ๐‘ก = ๐›ผ + ๐›ฝ ๐‘Ÿ ๐‘ก โˆ’ 1 + ๐œ€ ๐‘ก ๐œ€ ๐‘ก = โ„Ž ๐‘ก ๐‘ข ๐‘ก โ„Ž ๐‘ก = ๐œ‡ + ๐›ฟ โ„Ž ๐‘ก โˆ’ 1 + ๐œ™ ๐œ€ ๐‘ก โˆ’ 1 2 ๐”ผ ๐‘ก โˆ’ 1 ( ๐‘ข ๐‘ก ) = 0 ๐”ผ ๐‘ก โˆ’ 1 ( ๐‘ข ๐‘ก 2 ) = 1 You estimated the following values for the parameters ๐›ผ ๐›ฝ ๐œ‡ ๐›ฟ ๐œ™ 0.5911 0.9222 0.0112 0.9132 0.0611 Assume that the last 2 observations of the return process are ๐‘Ÿ ๐‘‡ = 0.04 and ๐‘Ÿ ๐‘‡ โˆ’ 1 = 0.05 , and the value of the conditional variance in the last period of your sample is โ„Ž ๐‘‡ = 0.5 . Then what is the predicted value of the conditional variance โ„Ž ๐‘‡ + 1 in period ๐‘‡ + 1 ?

้€‰้กน
A.There is not enough data to compute โ„Ž ฬ‚ ๐‘‡ + 1 .
B.โ„Ž ฬ‚ ๐‘‡ + 1 = 0.7071
C.โ„Ž ฬ‚ ๐‘‡ + 1 = 0.4896
D.โ„Ž ฬ‚ ๐‘‡ + 1 = 0.2
E.โ„Ž ฬ‚ ๐‘‡ + 1 = 0.5
F.โ„Ž ฬ‚ ๐‘‡ + 1 = 0.0016
ๆŸฅ็œ‹่งฃๆž

ๆŸฅ็œ‹่งฃๆž

ๆ ‡ๅ‡†็ญ”ๆกˆ
Please login to view
ๆ€่ทฏๅˆ†ๆž
We are given a GARCH(1,1) setup with the following (slightly garbled) specification and parameter estimates: - r_t = ฮฑ + ฮฒ r_{t-1} โˆ’ 1 + ฮต_t - ฮต_t is related to shocks - h_t = ฮผ + ฮด h_{tโˆ’1} + ฯ† ฮต_{tโˆ’1} - E_t(โˆ’1)(u_t) = 0 and E_t(โˆ’1)(u_t^2) = 1 (these appear to be normalization conditions for the error terms) Estimated parameters: ฮฑ = 0.5911, ฮฒ = 0.9222, ฮผ = 0.0112, ฮด = 0.9132, ฯ† = 0.0611 Given data: r_T = 0.04, r_{Tโˆ’1} = 0.05, h_T = 0.5 We are asked for the predicted h_{T+1}. Option-by-option analysis: Option A: There is not enough data to compute hฬ‚_{T+1}. - This is not correct. With the provided last-period variance h_T, the last return r_T, and the previous return r_{Tโˆ’1}, together with the model parameters, one can compute ฮต_T and then propagate h to the next period u......Login to view full explanation

็™ปๅฝ•ๅณๅฏๆŸฅ็œ‹ๅฎŒๆ•ด็ญ”ๆกˆ

ๆˆ‘ไปฌๆ”ถๅฝ•ไบ†ๅ…จ็ƒ่ถ…50000้“่€ƒ่ฏ•ๅŽŸ้ข˜ไธŽ่ฏฆ็ป†่งฃๆž,็Žฐๅœจ็™ปๅฝ•,็ซ‹ๅณ่Žทๅพ—็ญ”ๆกˆใ€‚

็ฑปไผผ้—ฎ้ข˜

According to the GARCH model ฯƒTHURSDAY2=ฯ‰+ฮฑRBLANK12+ฮฒฯƒBLANK22\sigma_{THURSDAY}^2 = \omega + \alpha R_{BLANK1}^2 +\beta \sigma_{BLANK2}^2 (Hint: fill in day of the week like Monday, Tuesday...) BLANK1:[Fill in the blank], BLANK2:[Fill in the blank],

Consider the following GARCH(1,1) model for the volatility of asset returns ๐‘Ÿ ๐‘ก : ๐‘Ÿ ๐‘ก = ๐œ€ ๐‘ก ๐œ€ ๐‘ก = โ„Ž ๐‘ก ๐‘ข ๐‘ก โ„Ž ๐‘ก = ๐œ‡ + ๐›ฟ โ„Ž ๐‘ก โˆ’ 1 + ๐œ™ ๐œ€ ๐‘ก โˆ’ 1 2 ๐”ผ ๐‘ก โˆ’ 1 ( ๐‘ข ๐‘ก ) = 0 ๐”ผ ๐‘ก โˆ’ 1 ( ๐‘ข ๐‘ก 2 ) = 1 You estimated the following values for the parameters Parameters Estimates MLE ๐œ‡ 0.0112 ๐›ฟ 0.932 ๐œ™ 0.0811 and the variance-covariance matrix is ๐‘‰ ( ๐œƒ ฬ‚ ) = [ 0.0012 โˆ’ 0.012 0.001 โˆ’ 0.012 0.102 โˆ’ 0.003 0.001 โˆ’ 0.003 0.003 ] Assume the last observation in your sample has โ„Ž ๐‘‡ = 1.5056 . What is the value of the conditional variance ๐‘‰ ๐‘‡ โˆ’ 1 ( ๐‘Ÿ ๐‘‡ ) ?

Consider the following GARCH(1,1) model for the volatility of asset returns ๐‘Ÿ ๐‘ก : ๐‘Ÿ ๐‘ก = ๐›ผ + ๐›ฝ ๐‘Ÿ ๐‘ก โˆ’ 1 + ๐œ€ ๐‘ก ๐œ€ ๐‘ก = โ„Ž ๐‘ก ๐‘ข ๐‘ก โ„Ž ๐‘ก = ๐œ‡ + ๐›ฟ โ„Ž ๐‘ก โˆ’ 1 + ๐œ™ ๐œ€ ๐‘ก โˆ’ 1 2 ๐”ผ ๐‘ก โˆ’ 1 ( ๐‘ข ๐‘ก ) = 0 ๐”ผ ๐‘ก โˆ’ 1 ( ๐‘ข ๐‘ก 2 ) = 1 You estimated the following values for the parameters Estimates Parameters ๐›ผ ๐›ฝ ๐œ‡ ๐›ฟ ๐œ™ Estimates 0.1911 0.9722 0.0011 0.9321 0.0821 Assume that the last 2 observations of the return process are ๐‘Ÿ ๐‘‡ = 0.07 and ๐‘Ÿ ๐‘‡ โˆ’ 1 = 0.03 , and the value of the conditional variance in the last period of your sample is โ„Ž ๐‘‡ = 0.55 . Then what is the predicted value of the conditional variance โ„Ž ๐‘‡ + 1 in period ๐‘‡ + 1 ?

Consider the following GARCH(1,1) model for the volatility of asset returns ๐‘Ÿ ๐‘ก : ๐‘Ÿ ๐‘ก = ๐›ผ + ๐›ฝ ๐‘Ÿ ๐‘ก โˆ’ 1 + ๐œ€ ๐‘ก ๐œ€ ๐‘ก = โ„Ž ๐‘ก ๐‘ข ๐‘ก โ„Ž ๐‘ก = ๐œ‡ + ๐›ฟ โ„Ž ๐‘ก โˆ’ 1 + ๐œ™ ๐œ€ ๐‘ก โˆ’ 1 2 ๐”ผ ๐‘ก โˆ’ 1 ( ๐‘ข ๐‘ก ) = 0 ๐”ผ ๐‘ก โˆ’ 1 ( ๐‘ข ๐‘ก 2 ) = 1 You estimated the following values for the parameters ๐›ผ ๐›ฝ ๐œ‡ ๐›ฟ ๐œ™ 0.5911 0.9222 0.0112 0.9132 0.0611 Assume that the last 2 observations of the return process are ๐‘Ÿ ๐‘‡ = 0.04 and ๐‘Ÿ ๐‘‡ โˆ’ 1 = 0.05 , and the value of the conditional variance in the last period of your sample is โ„Ž ๐‘‡ = 0.5 . Then what is the predicted value of the conditional variance โ„Ž ๐‘‡ + 1 in period ๐‘‡ + 1 ?

ๆ›ดๅคš็•™ๅญฆ็”Ÿๅฎž็”จๅทฅๅ…ท

ๅŠ ๅ…ฅๆˆ‘ไปฌ๏ผŒ็ซ‹ๅณ่งฃ้” ๆตท้‡็œŸ้ข˜ ไธŽ ็‹ฌๅฎถ่งฃๆž๏ผŒ่ฎฉๅคไน ๅฟซไบบไธ€ๆญฅ๏ผ