้ข็ฎ
ๅ้กน้ๆฉ้ข
Consider the following GARCH(1,1) model for the volatility of asset returns ๐ ๐ก : ๐ ๐ก = ๐ผ + ๐ฝ ๐ ๐ก โ 1 + ๐ ๐ก ๐ ๐ก = โ ๐ก ๐ข ๐ก โ ๐ก = ๐ + ๐ฟ โ ๐ก โ 1 + ๐ ๐ ๐ก โ 1 2 ๐ผ ๐ก โ 1 ( ๐ข ๐ก ) = 0 ๐ผ ๐ก โ 1 ( ๐ข ๐ก 2 ) = 1 You estimated the following values for the parameters ๐ผ ๐ฝ ๐ ๐ฟ ๐ 0.5911 0.9222 0.0112 0.9132 0.0611 Assume that the last 2 observations of the return process are ๐ ๐ = 0.04 and ๐ ๐ โ 1 = 0.05 , and the value of the conditional variance in the last period of your sample is โ ๐ = 0.5 . Then what is the predicted value of the conditional variance โ ๐ + 1 in period ๐ + 1 ?
้้กน
A.There is not enough data to compute
โ
ฬ
๐
+
1
.
B.โ
ฬ
๐
+
1
=
0.7071
C.โ
ฬ
๐
+
1
=
0.4896
D.โ
ฬ
๐
+
1
=
0.2
E.โ
ฬ
๐
+
1
=
0.5
F.โ
ฬ
๐
+
1
=
0.0016
ๆฅ็่งฃๆ
ๆ ๅ็ญๆก
Please login to view
ๆ่ทฏๅๆ
We are given a GARCH(1,1) setup with the following (slightly garbled) specification and parameter estimates:
- r_t = ฮฑ + ฮฒ r_{t-1} โ 1 + ฮต_t
- ฮต_t is related to shocks
- h_t = ฮผ + ฮด h_{tโ1} + ฯ ฮต_{tโ1}
- E_t(โ1)(u_t) = 0 and E_t(โ1)(u_t^2) = 1 (these appear to be normalization conditions for the error terms)
Estimated parameters: ฮฑ = 0.5911, ฮฒ = 0.9222, ฮผ = 0.0112, ฮด = 0.9132, ฯ = 0.0611
Given data: r_T = 0.04, r_{Tโ1} = 0.05, h_T = 0.5
We are asked for the predicted h_{T+1}.
Option-by-option analysis:
Option A: There is not enough data to compute hฬ_{T+1}.
- This is not correct. With the provided last-period variance h_T, the last return r_T, and the previous return r_{Tโ1}, together with the model parameters, one can compute ฮต_T and then propagate h to the next period u......Login to view full explanation็ปๅฝๅณๅฏๆฅ็ๅฎๆด็ญๆก
ๆไปฌๆถๅฝไบๅ จ็่ถ 50000้่่ฏๅ้ขไธ่ฏฆ็ป่งฃๆ,็ฐๅจ็ปๅฝ,็ซๅณ่ทๅพ็ญๆกใ
็ฑปไผผ้ฎ้ข
According to the GARCH model ฯTHURSDAY2=ฯ+ฮฑRBLANK12+ฮฒฯBLANK22\sigma_{THURSDAY}^2 = \omega + \alpha R_{BLANK1}^2 +\beta \sigma_{BLANK2}^2 (Hint: fill in day of the week like Monday, Tuesday...) BLANK1:[Fill in the blank], BLANK2:[Fill in the blank],
Consider the following GARCH(1,1) model for the volatility of asset returns ๐ ๐ก : ๐ ๐ก = ๐ ๐ก ๐ ๐ก = โ ๐ก ๐ข ๐ก โ ๐ก = ๐ + ๐ฟ โ ๐ก โ 1 + ๐ ๐ ๐ก โ 1 2 ๐ผ ๐ก โ 1 ( ๐ข ๐ก ) = 0 ๐ผ ๐ก โ 1 ( ๐ข ๐ก 2 ) = 1 You estimated the following values for the parameters Parameters Estimates MLE ๐ 0.0112 ๐ฟ 0.932 ๐ 0.0811 and the variance-covariance matrix is ๐ ( ๐ ฬ ) = [ 0.0012 โ 0.012 0.001 โ 0.012 0.102 โ 0.003 0.001 โ 0.003 0.003 ] Assume the last observation in your sample has โ ๐ = 1.5056 . What is the value of the conditional variance ๐ ๐ โ 1 ( ๐ ๐ ) ?
Consider the following GARCH(1,1) model for the volatility of asset returns ๐ ๐ก : ๐ ๐ก = ๐ผ + ๐ฝ ๐ ๐ก โ 1 + ๐ ๐ก ๐ ๐ก = โ ๐ก ๐ข ๐ก โ ๐ก = ๐ + ๐ฟ โ ๐ก โ 1 + ๐ ๐ ๐ก โ 1 2 ๐ผ ๐ก โ 1 ( ๐ข ๐ก ) = 0 ๐ผ ๐ก โ 1 ( ๐ข ๐ก 2 ) = 1 You estimated the following values for the parameters Estimates Parameters ๐ผ ๐ฝ ๐ ๐ฟ ๐ Estimates 0.1911 0.9722 0.0011 0.9321 0.0821 Assume that the last 2 observations of the return process are ๐ ๐ = 0.07 and ๐ ๐ โ 1 = 0.03 , and the value of the conditional variance in the last period of your sample is โ ๐ = 0.55 . Then what is the predicted value of the conditional variance โ ๐ + 1 in period ๐ + 1 ?
Consider the following GARCH(1,1) model for the volatility of asset returns ๐ ๐ก : ๐ ๐ก = ๐ผ + ๐ฝ ๐ ๐ก โ 1 + ๐ ๐ก ๐ ๐ก = โ ๐ก ๐ข ๐ก โ ๐ก = ๐ + ๐ฟ โ ๐ก โ 1 + ๐ ๐ ๐ก โ 1 2 ๐ผ ๐ก โ 1 ( ๐ข ๐ก ) = 0 ๐ผ ๐ก โ 1 ( ๐ข ๐ก 2 ) = 1 You estimated the following values for the parameters ๐ผ ๐ฝ ๐ ๐ฟ ๐ 0.5911 0.9222 0.0112 0.9132 0.0611 Assume that the last 2 observations of the return process are ๐ ๐ = 0.04 and ๐ ๐ โ 1 = 0.05 , and the value of the conditional variance in the last period of your sample is โ ๐ = 0.5 . Then what is the predicted value of the conditional variance โ ๐ + 1 in period ๐ + 1 ?
ๆดๅค็ๅญฆ็ๅฎ็จๅทฅๅ ท
ๅธๆไฝ ็ๅญฆไน ๅๅพๆด็ฎๅ
ๅ ๅ ฅๆไปฌ๏ผ็ซๅณ่งฃ้ ๆตท้็้ข ไธ ็ฌๅฎถ่งฃๆ๏ผ่ฎฉๅคไน ๅฟซไบบไธๆญฅ๏ผ