题目
ENG1090 - MUM S1 2025 Mock Final Exam
数值题
Let \(f(x) = e^{\sin^2(2\pi x)}\). Calculate $$\int_{0}^{1} f'(x) \, dx $$
查看解析
标准答案
Please login to view
思路分析
To approach this integral, recognize that the integrand is f'(x) for the given function f. When integrating a derivative over an interval, the Fundamental Theo......Login to view full explanation登录即可查看完整答案
我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。
类似问题
Find the derivative.
Let [math: F(x)=∫03xet2 dt]\displaystyle F(x)=\int _0^{3x}{e^{t^2} dt}. Compute [math: F′(0.5)]F’(0.5). (Correct the answer to 2 decimal places.)
Use the fundamental theorem of calculus to find the following derivative:\dfrac{d}{dx} \displaystyle \int_0^{x^2} \dfrac{1}{\sqrt{1+t^2}}\, dt.Choose the correct response from below.
Use the fundamental theorem of calculus to find the following derivative:\dfrac{d}{dx} \displaystyle \int_0^x t\cos(t)\, dt.Choose the correct response from below.
更多留学生实用工具
希望你的学习变得更简单
加入我们,立即解锁 海量真题 与 独家解析,让复习快人一步!