题目
MATH-112-301-001 Unproctored Midcourse Exam 4 Practice Exam 1
单项选择题
Given that 𝐺 ( 𝑥 ) = ∫ 3 𝑥 cos ( 𝜋 𝑡 / 6 ) 𝑡 2 𝑑 𝑡 , what is 𝐺 ′ ( 2 ) ?
查看解析
标准答案
Please login to view
思路分析
The question as provided defines G(x) as an integral: G(x) = ∫ 3 x cos(π t/6) t^2 dt, but it does not specify the limits of integration. Without limits, the integral is not a well-defined function of x, so we cannot proceed to differentiate with respect to x or evaluate G'(2).
First, note a key principle: if you have a parameter x inside an integrand and want d/dx G(x) where G(x) = ∫ f(x, t) dt with fixed ......Login to view full explanation登录即可查看完整答案
我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。
类似问题
Find the derivative.
Let [math: F(x)=∫03xet2 dt]\displaystyle F(x)=\int _0^{3x}{e^{t^2} dt}. Compute [math: F′(0.5)]F’(0.5). (Correct the answer to 2 decimal places.)
Let \(f(x) = e^{\sin^2(2\pi x)}\). Calculate $$\int_{0}^{1} f'(x) \, dx $$
Use the fundamental theorem of calculus to find the following derivative:\dfrac{d}{dx} \displaystyle \int_0^{x^2} \dfrac{1}{\sqrt{1+t^2}}\, dt.Choose the correct response from below.
更多留学生实用工具
希望你的学习变得更简单
加入我们,立即解锁 海量真题 与 独家解析,让复习快人一步!