้ข˜็›ฎ
้ข˜็›ฎ

ECEN-314:200,501 Final Exam- Requires Respondus LockDown Browser

ๅ•้กน้€‰ๆ‹ฉ้ข˜

Suppose ๐‘ฅ ( ๐‘ก ) is periodic with a period of 2, and one period is described by ๐‘ฅ ( ๐‘ก ) = ๐‘’ โˆ’ ๐‘ก for โˆ’ 1 < ๐‘ก โ‰ค 1 . Which of the following is the correct form of the Fourier series coefficients? Note: The hyperbolic sine function is defined as sinh ( ๐‘ฅ ) = 1 2 ( ๐‘’ ๐‘ฅ โˆ’ ๐‘’ โˆ’ ๐‘ฅ ) .

้€‰้กน
A.๐‘‹ ๐‘˜ = ๐‘’ โˆ’ 1 + ๐‘— ๐‘˜ ๐œ‹ โˆ’ ๐‘’ 1 โˆ’ ๐‘— ๐‘˜ ๐œ‹ 2 + ๐‘— 2 ๐œ‹ ๐‘˜
B.๐‘‹ ๐‘˜ = ๐‘  ๐‘– ๐‘› โ„Ž ( 1 ) ( โˆ’ 1 ) ๐‘˜ 1 + ๐‘— ๐‘˜ ๐œ‹
C.๐‘‹ ๐‘˜ = ๐‘  ๐‘– ๐‘› โ„Ž ( 1 ) ๐‘’ ๐‘— ๐‘˜ ๐œ‹ 2 โˆ’ ๐‘— 2 ๐œ‹ ๐‘˜
D.๐‘‹ ๐‘˜ = 0
ๆŸฅ็œ‹่งฃๆž

ๆŸฅ็œ‹่งฃๆž

ๆ ‡ๅ‡†็ญ”ๆกˆ
Please login to view
ๆ€่ทฏๅˆ†ๆž
We start by restating the problem context to frame what we are evaluating. The task is to identify the correct form of the Fourier series coefficients X_k for a periodic function x(t) with period 2, where one period is given by x(t) = e^{-t} for -1 < t โ‰ค 1. The hyperbolic sine sinh(x) is defined as (e^{x} - e^{-x})/2, which often appears in compact expressions for certain Fourier coefficients when the function involves exponential decay over a symmetric interval. Option A: X_k = e^{-1} + j k ฯ€ โˆ’ e^{1} โˆ’ j k ฯ€^2 This option combines exponential terms evaluated at the period endpoints with a quadratic term in k through ฯ€^2. However, a typical Fourier coefficient for a piecewise exponential on a symmetric interval does not introduce a direct combination like e^{-1} โˆ’ e^{1} scaled by something, nor does it naturally yield a term proportional to ฯ€^2 without additional integration factors. The presence of both e^{-1} and e^{1} in a single linear combination, and ......Login to view full explanation

็™ปๅฝ•ๅณๅฏๆŸฅ็œ‹ๅฎŒๆ•ด็ญ”ๆกˆ

ๆˆ‘ไปฌๆ”ถๅฝ•ไบ†ๅ…จ็ƒ่ถ…50000้“่€ƒ่ฏ•ๅŽŸ้ข˜ไธŽ่ฏฆ็ป†่งฃๆž,็Žฐๅœจ็™ปๅฝ•,็ซ‹ๅณ่Žทๅพ—็ญ”ๆกˆใ€‚

็ฑปไผผ้—ฎ้ข˜

ๆ›ดๅคš็•™ๅญฆ็”Ÿๅฎž็”จๅทฅๅ…ท

ๅŠ ๅ…ฅๆˆ‘ไปฌ๏ผŒ็ซ‹ๅณ่งฃ้” ๆตท้‡็œŸ้ข˜ ไธŽ ็‹ฌๅฎถ่งฃๆž๏ผŒ่ฎฉๅคไน ๅฟซไบบไธ€ๆญฅ๏ผ