题目
MATH1062/1005/1023 (ND) MATH1062/1023 Calculus Quiz 4
单项选择题
Find the function y(t) that satisfies the differential equation dy dt −7t6y=24t2et7 and the condition y(0)=−4.
选项
A.y(t)=8t3et7
B.y(t)=(8t3+4)et7
C.y(t)=(t7+24t6−4)et7
D.y(t)=(8t3−4)et7
查看解析
标准答案
Please login to view
思路分析
We start with the given differential equation: dy/dt − 7 t^6 y = 24 t^2 e^{t^7}, with the initial condition y(0) = −4.
First, identify the integrating factor for the linear first-order ODE. The coefficient of y is −7 t^6, so the integrating factor μ(t) is exp(−∫7 t^6 dt) = exp......Login to view full explanation登录即可查看完整答案
我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。
类似问题
Solve the initial value problem: 𝑥 𝑑 𝑦 𝑑 𝑥 − 3 𝑦 = 𝑥 4 cos 𝑥 , 𝑦 ( 2 𝜋 ) = 0. Hint: Use an integrating factor.
Question26 Consider the following first-order linear differential equation: [math] Which of the following represents the correct general solution?Select one alternative: [math] [math] [math] [math] ResetMaximum marks: 1 Flag question undefined
Find the general solution of the differential equation $$\sin(x)\dfrac{dy}{dx} + \cos(x)y = 2\cos(x)$$
Use the integrating factor method to find the general solution of the linear first order ODExdydx−y=x2ex x\frac{dy}{dx} - y =x^2 e^x .The general solution of the ODE can be written as
更多留学生实用工具
希望你的学习变得更简单
加入我们,立即解锁 海量真题 与 独家解析,让复习快人一步!