题目
题目
单项选择题

Let [math: x=(x1,x2)]x=(x_1,x_2) and [math: y=(y1,y2)]y=(y_1,y_2) and let kernel k be defined as follows: [math: k(x,y)=ex1x2+y1y2+2x1y1x2y2+0.25x13y13]k(x,y) = e^{x_1x_2+y_1y_2} +2 \frac{x_1 y_1}{x_2y_2} + 0.25 x_1^3 y_1^3 which transformation [math: ϕ]\phi does this kernel correspond to?

选项
A.a. [math: ϕ(x)=(ex1x2,2x1x2,0.5x13)]\phi(x)=(e^{x_1x2}, \sqrt{2} \frac{x_1}{x_2}, 0.5 x_1^3)
B.b. [math: ϕ(x)=(ex1,ex2,2x1x2,0.25x13)]\phi(x)=(e^{x_1}, e^{x_2}, \sqrt{2} \frac{x_1}{x_2}, 0.25 x_1^3)
C.c. [math: ϕ(x)=(ex1x2,2x1x2,0.25x13)]\phi(x)=(e^{x_1x_2}, \sqrt{2} \frac{x_1}{x_2}, 0.25 x_1^3)
D.d. [math: ϕ(x)=(ex1+x2,2x1x2,0.5x13)]\phi(x)=(e^{x_1+x2}, \sqrt{2} \frac{x_1}{x_2}, 0.5 x_1^3)
题目图片
查看解析

查看解析

标准答案
Please login to view
思路分析
We start by identifying the goal: represent the kernel k(x,y) as a inner product in some feature space, i.e., k(x,y) = φ(x) · φ(y). Option a provides φ(x) = ( e^{x1 x2}, sqrt{2} * (x1/x2), 0.5 * x1^3 ). If we take the dot product φ(x) · φ(y) for this φ, we get: - First component: e^{x1 x2} * e^{y1 y2} = e^{x1 x2} e^{y1 y2} = e^{(x1 x2) + (y1 y2)} since exponentials multiply when exponents add. This matches the first term e^{x1 x2 + y1......Login to view full explanation

登录即可查看完整答案

我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。

类似问题

更多留学生实用工具

加入我们,立即解锁 海量真题独家解析,让复习快人一步!