题目
COMP9417-Machine Learning & Data Mining - T3 2025
单项选择题
Let [math: x=(x1,x2)]x=(x_1,x_2) and [math: y=(y1,y2)]y=(y_1,y_2) and let kernel k be defined as follows: [math: k(x,y)=ex1x2+y1y2+2x1y1x2y2+0.25x13y13]k(x,y) = e^{x_1x_2+y_1y_2} +2 \frac{x_1 y_1}{x_2y_2} + 0.25 x_1^3 y_1^3 which transformation [math: ϕ]\phi does this kernel correspond to?
选项
A.a. [math: ϕ(x)=(ex1x2,2x1x2,0.5x13)]\phi(x)=(e^{x_1x2}, \sqrt{2} \frac{x_1}{x_2}, 0.5 x_1^3)
B.b. [math: ϕ(x)=(ex1+x2,2x1x2,0.5x13)]\phi(x)=(e^{x_1+x2}, \sqrt{2} \frac{x_1}{x_2}, 0.5 x_1^3)
C.c. [math: ϕ(x)=(ex1x2,2x1x2,0.25x13)]\phi(x)=(e^{x_1x_2}, \sqrt{2} \frac{x_1}{x_2}, 0.25 x_1^3)
D.d. [math: ϕ(x)=(ex1,ex2,2x1x2,0.25x13)]\phi(x)=(e^{x_1}, e^{x_2}, \sqrt{2} \frac{x_1}{x_2}, 0.25 x_1^3)

查看解析
标准答案
Please login to view
思路分析
We are given a kernel k(x,y) = e^{x1 x2 + y1 y2} + 2 (x1 y1)/(x2 y2) + 0.25 x1^3 y1^3 and asked which feature map ϕ corresponds to this kernel, i.e., k(x,y) = ϕ(x) · ϕ(y).
Option a proposes ϕ(x) = ( e^{x1 x2}, sqrt(2) x1/x2, 0.5 x1^3 ). Its inner product with y is:
- e^{x1 x2} e^{y1 y2} from the first components, which yields e^{x1 x2 + y1 y2} as in k.
- (sqrt(2) x1......Login to view full explanation登录即可查看完整答案
我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。
类似问题
Let [math: x=(x1,x2)]x=(x_1,x_2) and [math: y=(y1,y2)]y=(y_1,y_2) and let kernel k be defined as follows: [math: k(x,y)=ex1x2+y1y2+2x1y1x2y2+0.25x13y13]k(x,y) = e^{x_1x_2+y_1y_2} +2 \frac{x_1 y_1}{x_2y_2} + 0.25 x_1^3 y_1^3 which transformation [math: ϕ]\phi does this kernel correspond to?
Let x=(x_1,x_2) and y=(y_1,y_2) and let kernel k be defined as follows: k(x,y) = e^{x_1x_2+y_1y_2} +2 \frac{x_1 y_1}{x_2y_2} + 0.25 x_1^3 y_1^3 which transformation \phi does this kernel correspond to?
Let [math: x=(x1,x2)]x=(x_1,x_2) and [math: y=(y1,y2)]y=(y_1,y_2) and let kernel k be defined as follows: [math: k(x,y)=ex1x2+y1y2+2x1y1x2y2+0.25x13y13]k(x,y) = e^{x_1x_2+y_1y_2} +2 \frac{x_1 y_1}{x_2y_2} + 0.25 x_1^3 y_1^3 which transformation [math: ϕ]\phi does this kernel correspond to?
Consider the following dataset: [math: X=[−π,−0.5π,0,0.5π,π]]X=[-\pi,-0.5\pi,0,0.5\pi,\pi] with corresponding labels [math: y=[1,−1,−1,−1,1]]y=[1,-1,-1,-1,1]. Which of the following transformations would make the data linearly separable? A. [math: ϕ(x)=(x,cos(x))]\phi(x)=(x,cos( x)) B. [math: ϕ(x)=(x,sin(x))]\phi(x)=(x,sin(x)) C. [math: ϕ(x)=(x,cos(0.5x))]\phi(x)=(x,cos(0.5 x)) D. [math: ϕ(x)=(x,sin(0.5x))]\phi(x)=(x,sin(0.5 x))
更多留学生实用工具
希望你的学习变得更简单
加入我们,立即解锁 海量真题 与 独家解析,让复习快人一步!