题目
题目
单项选择题

Let x=(x_1,x_2) and y=(y_1,y_2) and let kernel k be defined as follows: k(x,y) = e^{x_1x_2+y_1y_2} +2 \frac{x_1 y_1}{x_2y_2} + 0.25 x_1^3 y_1^3 which transformation \phi does this kernel correspond to?

题目图片
查看解析

查看解析

标准答案
Please login to view
思路分析
We’re given a kernel k(x,y) on x=(x1,x2) and y=(y1,y2): k(x,y) = e^{x1 x2 + y1 y2} + 2 * (x1 y1) / (x2 y2) + 0.25 * x1^3 * y1^3. We want to identify a corresponding feature map φ such that k(x,y) = φ(x) · φ(y). Option a: φ(x) = (e^{x1 x2}, sqrt{2} * x1/x2, 0.5 * x1^3). - If we compute φ(x)·φ(y) for this choice, we get e^{x1 x2} * e^{y1 y2} = e^{x1 x2 + y1 y2} for the first term, which is fine. - The second term would be (sqrt{2} * x1/x2) * (sqrt{2} * y1/y2) = 2 * (x1 y1)/(x2 y2), w......Login to view full explanation

登录即可查看完整答案

我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。

类似问题

更多留学生实用工具

加入我们,立即解锁 海量真题独家解析,让复习快人一步!