题目
题目
多项选择题

Consider the following dataset: [math: X=[−π,−0.5π,0,0.5π,π]]X=[-\pi,-0.5\pi,0,0.5\pi,\pi] with corresponding labels [math: y=[1,−1,−1,−1,1]]y=[1,-1,-1,-1,1]. Which of the following transformations would make the data linearly separable? A. [math: ϕ(x)=(x,cos(x))]\phi(x)=(x,cos( x)) B. [math: ϕ(x)=(x,sin(x))]\phi(x)=(x,sin(x)) C. [math: ϕ(x)=(x,cos(0.5x))]\phi(x)=(x,cos(0.5 x)) D. [math: ϕ(x)=(x,sin(0.5x))]\phi(x)=(x,sin(0.5 x))

选项
A.a. A
B.b. B
C.c. C
D.d. D
题目图片
查看解析

查看解析

标准答案
Please login to view
思路分析
Question restatement: Given X = [-π, -0.5π, 0, 0.5π, π] with corresponding labels y = [1, -1, -1, -1, 1], which of the following feature mappings ϕ(x) would make the data linearly separable? Options: A. ϕ(x) = (x, cos(x)) B. ϕ(x) = (x, sin(x)) C. ϕ(x) = (x, cos(0.5x)) D. ϕ(x) = (x, sin(0.5x)) Possible answers: A. A B. B C. C D. D Analysis of each option: - Option A: ϕ(x) = (x, cos(x)). Here the first component is the original x, and the second is cos(x). The cosine term cos(x) is symmetric around x = 0 and oscillates between -1 and 1, producing a nonlinear boundary in the (x, cos(x)) feature space. Depending on the sample coordinates x = -π, -0.5π, 0, 0.5π, π, the cosine values are cos(-π) = -1, cos(-0.5π) = 0, cos(0) = 1, cos(0.5π) = 0, cos(π) = -1. Combining with x, this......Login to view full explanation

登录即可查看完整答案

我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。

类似问题

更多留学生实用工具

加入我们,立即解锁 海量真题独家解析,让复习快人一步!