题目
题目

COMP9417-Machine Learning & Data Mining - T3 2025

多项选择题

Consider the following dataset: [math: X=[−π,−0.5π,0,0.5π,π]]X=[-\pi,-0.5\pi,0,0.5\pi,\pi] with corresponding labels [math: y=[1,−1,−1,−1,1]]y=[1,-1,-1,-1,1]. Which of the following transformations would make the data linearly separable? A. [math: ϕ(x)=(x,cos(x))]\phi(x)=(x,cos( x)) B. [math: ϕ(x)=(x,sin(x))]\phi(x)=(x,sin(x)) C. [math: ϕ(x)=(x,cos(0.5x))]\phi(x)=(x,cos(0.5 x)) D. [math: ϕ(x)=(x,sin(0.5x))]\phi(x)=(x,sin(0.5 x))

选项
A.a. A
B.b. B
C.c. C
D.d. D
题目图片
查看解析

查看解析

标准答案
Please login to view
思路分析
We’re given a small 1D dataset with X = [−π, −0.5π, 0, 0.5π, π] and labels y = [1, −1, −1, −1, 1]. The question asks which feature mappings φ(x) would make the data linearly separable in the new feature space. Option A: φ(x) = (x, cos(x)) - The original x coordinate preserves order, and adding cos(x) introduces a smooth, bounded nonlinear dimension that correlates with the sign pattern of y across the symmetric range. Since cos(x) is even and x is odd, the combination can create a decision boundary that splits the endpoints (where y flips sign) more easily than using x alone. This pairing often helps separat......Login to view full explanation

登录即可查看完整答案

我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。

类似问题

更多留学生实用工具

加入我们,立即解锁 海量真题独家解析,让复习快人一步!