题目
题目

BU.232.630.W5.SP25 sample_quiz_1

单项选择题

Consider two random variables: 𝑋 can take values ( 4 , 5 ) , and 𝑌 can take values ( 1 , 2 , 3 ) . The joint distribution of 𝑋 and 𝑌 is shown in the table below 𝑌 1 2 3 𝑋 4 0.05 0.2 0.25 5 0.10 0.3 0.10 Using this information, please compute the unconditional expected value 𝐸 ( 𝑋 ) and the conditional expected value 𝐸 ( 𝑋 | 𝑌 = 2 ) . (Please round your results to the 4th decimal place.)

选项
A.𝐸 ( 𝑋 ) = 2.2 ; 𝐸 ( 𝑋 | 𝑌 = 2 ) = 2
B.𝐸 ( 𝑋 ) = 4.5 ; 𝐸 ( 𝑋 | 𝑌 = 2 ) = 4.6667
C.𝐸 ( 𝑋 ) = 4.5 ; 𝐸 ( 𝑋 | 𝑌 = 2 ) = 2
D.𝐸 ( 𝑋 ) = 4.5 ; 𝐸 ( 𝑋 | 𝑌 = 2 ) = 4.6
E.𝐸 ( 𝑋 ) = 2.2 ; 𝐸 ( 𝑋 | 𝑌 = 2 ) = 4.6
F.𝐸 ( 𝑋 ) = 4.6667 ; 𝐸 ( 𝑋 | 𝑌 = 2 ) = 4.6667
查看解析

查看解析

标准答案
Please login to view
思路分析
We start by restating the problem and the given joint distribution so we can reason about the required expectations. X takes values {4, 5} and Y takes values {1, 2, 3} with the joint probabilities: - P(X=4, Y=1) = 0.05, P(X=4, Y=2) = 0.20, P(X=4, Y=3) = 0.25 - P(X=5, Y=1) = 0.10, P(X=5, Y=2) = 0.30, P(X=5, Y=3) = 0.10 Step 1: Compute the unconditional expectation E(X). - First, find P(X=4) by summing the row for X=4: 0.05 + 0.20 + 0.25 = 0.50. - Next, find P(X=5) by summing the row for X=5: 0.10 + 0.30 + 0.10 = 0.50. - Then E(X) = 4*P(X=4) + 5*P(X=5) = 4*(0.50) + 5*(0.50) = 2.00 + 2.50 = 4.50. Option-by-optio......Login to view full explanation

登录即可查看完整答案

我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。

更多留学生实用工具

加入我们,立即解锁 海量真题独家解析,让复习快人一步!