题目
判断题
True or False: Suppose that A is a 3x3 matrix whose eigenvalues are -3, 5 and 1/2. Then it must be the case that A is an invertible matrix.
选项
A.True
B.False
查看解析
标准答案
Please login to view
思路分析
Consider the statement and its implications by analyzing what eigenvalues tell us about invertibility.
Option 1 (True): If a square matrix has an eigenvalue of 0, then the matrix is singular and not invertible; equivalently, a matrix is invertible precisely when none of its eigenvalues are zero. In this case,......Login to view full explanation登录即可查看完整答案
我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。
类似问题
True or False: If 'L' is an eigenvalue for some square matrix, A, then 'L' must also be an eigenvalue for the square matrix A-1.
True or False: If 'L' is an eigenvalue for some square matrix, A, then 'L' must also be an eigenvalue for the square matrix AT.
Question20 Consider the matrix [math]. What are the eigenvalues of this matrix?Select one alternative: 1 and 5 1 and 6 0 and 5 0 and 6 ResetMaximum marks: 1 Flag question undefined
Let the matrix 𝑋 be 𝑋 = [ − 9 4 − 7 𝑘 ] . For 𝑋 to have 0 as an eigenvalue, what must 𝑘 be?
更多留学生实用工具
希望你的学习变得更简单
加入我们,立即解锁 海量真题 与 独家解析,让复习快人一步!