题目
题目

CS5800.18622.202610 Quiz 10

单项选择题

If Dijkstra's algorithm is performed on the graph with vertex set { 0 , 1 , 2 , 3 , 4 , 5 }  and adjacency matrix given below, what is the sequence of edges added to the result (shortest path tree). Use vertex 0 as a source.  We break ties between vertices by picking the vertex with lower index.  For example, EXTRACT-MIN returns vertex 1 before vertex 2, if both vertices have the same minimum estimate.   ( 0 8 5 9 6 3 8 0 2 2 5 2 5 2 0 3 1 7 9 2 3 0 1 9 6 5 1 1 0 9 3 2 7 9 9 0 )

查看解析

查看解析

标准答案
Please login to view
思路分析
We are asked to determine the sequence of edges added to the shortest-path tree by Dijkstra's algorithm starting from vertex 0, using the given 6-vertex graph and its adjacency matrix. Since the provided data for answer options is empty, there are no alternative choices to evaluate; instead, I'll walk through the algorithm step by step and derive the tree explicitly, showing why the listed sequence would be the resulting one. First, interpret the adjacency matrix as the undirected weighted graph with vertices {0,1,2,3,4,5} and weights given by the matrix rows/columns. The matrix appears to be: - Row 0: 0, 8, 5, 9, 6, 3 - Row 1: 8, 0, 2, 2, 5, 2 - Row 2: 5, 2, 0, 3, 1, 7 - Row 3: 9, 2, 3, 0, 1, 9 - Row 4: 6, 5, 1......Login to view full explanation

登录即可查看完整答案

我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。

类似问题

Dijkstra's Link State Algorithm Consider the incomplete 6-node network shown below, with given link costs; where links x and y are unknown   Consider the completed table below, which calculates the shortest distance to all nodes from U:   Nodes  d, (p) d, (p)  d, (p) d, (p) d, (p) U V W X Y Z shortest distance from node U  0 4, X 3, U 1, U 5, X 6, W   For link x (link from node X, to node Y) , what is the cost associated with this link? [Fill in the blank] For link y (link from node U to node W) , what is the cost associated with this link?[Fill in the blank]

Dijkstra’s Link-State Algorithm Consider the following network. With the indicated link costs, use Dijkstra’s shortest-path algorithm to compute the shortest path from x to all network nodes.     Show how the algorithm works by computing the distance from x to all network nodes.   Notes : When the distance is infinity, write in the abbreviation "inf". When there is a tie in node distances, please choose from left to right, i.e. the node in the left column is chosen first. For the N* node-set, for example, if the node-set contains nodes, x, y, and z, enter xyz in the blanks. For the D(.),p(.) column, enter in the format of "Distance, Predecessor", for example, 5,u in the blanks. Compute the distance from x to all network nodes. Step N’ D(t),p(t) D(u),p(u) D(v),p(v) D(w),p(w) D(y),p(y) D(z),p(z) 0 [Fill in the blank] [Fill in the blank] [Fill in the blank] [Fill in the blank] [Fill in the blank] [Fill in the blank] [Fill in the blank] 1 [Fill in the blank] [Fill in the blank] [Fill in the blank] [Fill in the blank] [Fill in the blank] [Fill in the blank] 2 [Fill in the blank] [Fill in the blank] [Fill in the blank] [Fill in the blank] [Fill in the blank] 3 [Fill in the blank] [Fill in the blank] [Fill in the blank] [Fill in the blank] 4 [Fill in the blank] [Fill in the blank] [Fill in the blank] 5 [Fill in the blank] [Fill in the blank] 6 [Fill in the blank]   End of Table 

Question at position 4 Which route computation algorithm is used by the OSPF routing mechanism?DijkstraBellman-FordNone of ThemDSR

SPath_Alg_1 This question relates to the use of the Graph Abstract Data Type (ADT) implemented with an Adjacency Map, as covered in class. Below is the pseudocode for Dijkstra’s Algorithm: function DijkstraShortestPaths(Graph G, Vertex src):    Initialize distance map d ← empty map    Initialize visited set cloud ← empty set    Initialize priority queue pq    Initialize pqLocator ← empty map     for each vertex v in G:        if v == src:            d[v] ← 0        else:            d[v] ← ∞        pqLocator[v] ← pq.insert(d[v], v)     while pq is not empty:        (minDist, u) ← pq.remove_min()        cloud[u] ← minDist        remove pqLocator[u]         for each edge (u, v) incident from u:            if v not in cloud:                weight ← weight of edge (u, v)                if d[u] + weight < d[v]:                    d[v] ← d[u] + weight                    pq.update(pqLocator[v], d[v], v)     return cloud During the execution of the while loop, under what condition does the algorithm update a vertex v’s distance and modify its position in the priority queue? Graph ADT For reference: class Vertex:    def __init__(self, x):        self._element = x class Edge:    def __init__(self, u, v, x):        self._origin = u        self._destination = v        self._element = x     def opposite(self, v):        return self._destination if v == self._origin else self._origin class Graph:    def __init__(self, directed=False):        self._outgoing = {}        self._incoming = {} if directed else self._outgoing     def incident_edges(self, v):        return self._outgoing[v].values()

更多留学生实用工具

加入我们,立即解锁 海量真题独家解析,让复习快人一步!