题目
题目

MATH1062_MATH1005_MATH1023 MATH1062/1023 Calculus Quiz 8

单项选择题

Suppose f ( x , t ) = e − 2 t sin ⁡ ( x + 5 t ) . Which of the following is a good approximation of the value of f ( 2.02 , − 0.03 ) ? (Hint: first find the differential d f at the point ( 2 , 0 ) .)

查看解析

查看解析

标准答案
Please login to view
思路分析
We start by restating the given problem and the available option to set the stage for step-by-step evaluation. Question: Suppose f(x,t) = e^{-2t} sin(x + 5t). Which of the following is a good approximation of f(2.02, -0.03) using a differential at the point (2, 0)? The provided option is: 1.06 sin(2) − 0.13 cos(2). First, identify the differential at (2, 0). - Write f(x,t) = e^{-2t} sin(u) with u = x + 5t. - Partial derivatives at (x,t): • f_x = ∂f/∂x = e^{-2t} cos(u). • f_t = ∂f/∂t = e^{-2t} [−2 sin(u) + 5 cos(u)]. - Evaluate at (x,t) = (2,0): u = 2, e^{-2t} = 1, so • f_x(2,0) = cos(2), • f_t(2,0) = −2 sin(2) + 5 cos(2). Next, relate the differential to the tar......Login to view full explanation

登录即可查看完整答案

我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。

更多留学生实用工具

加入我们,立即解锁 海量真题独家解析,让复习快人一步!