题目
MCD1550 / MCD2140 - T1 - 2025 TEST 2 (Week 6)
单项选择题
If matrix \(A = \left[ {\begin{array}{*{20}{c}}5&6\\5&{ - 4}\end{array}} \right]\), then \(\det \left( A \right) = \)
查看解析
标准答案
Please login to view
思路分析
The matrix given is A = [[5, 6], [5, -4]]. To find its determinant, use the formula det(A) = ad - bc for a 2x2 matrix [[a, ......Login to view full explanation登录即可查看完整答案
我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。
类似问题
Question textThe linear transformation represented by a matrix 𝖠 transforms the unit square [math][0,1] \times [0,1] into a parallelogram with vertices [math: [0,0]]{\left[ 0 , 0 \right]}, [math: [3,0]]{\left[ 3 , 0 \right]}, [math: [2,5]]{\left[ 2 , 5 \right]}, and [math: [5,5]]{\left[ 5 , 5 \right]}. What is the magnitude of the determinant of 𝖠?[input] Check Question 40
A is a ( 2 × 2 ) matrix and the inverse of 1 3 𝐴 is the identity matrix. What is the determinant of A?
The matrix [math: [234x+1]] \left[\begin{array}{cc} 2&3 \\ 4&x+1 \end{array}\right] will NOT have an inverse where:
The matrix [math: [234x+1]] \left[\begin{array}{cc} 2&3 \\ 4&x+1 \end{array}\right] will NOT have an inverse where:
更多留学生实用工具
希望你的学习变得更简单
加入我们,立即解锁 海量真题 与 独家解析,让复习快人一步!