题目
题目

SCNC1111_2B_2024 Quiz 4

单项选择题

Let [math: f(t)=t2+t3]f(t)=t^{2}+\sqrt{t^{3}}. Find [math: f′(2)]f'(2).

选项
A.a. [math: 322+2]\frac{3}{2\sqrt{2}}+2
B.b. [math: 322+4]\frac{3\sqrt{2}}{2}+4
C.c. [math: 322+4]\frac{3}{2\sqrt{2}}+4
D.d. [math: 322+2]\frac{3\sqrt{2}}{2}+2
查看解析

查看解析

标准答案
Please login to view
思路分析
We start by understanding the function: f(t) = t^2 + sqrt(t^3) = t^2 + t^(3/2). Step 1: Differentiate f(t). - The derivative of t^2 with respect to t is 2t. - The derivative of t^(3/2) is (3/2) t^(1/2) by the power rule. So f'(t) = 2t + (3/2) t^(1/2) = 2t + (3/2) sqrt(t). Step 2: Evaluate f'(t) at t = 2. - 2t at t=2 is 2*2 = 4. - (3/2) sqrt(t) at t=2 is (3/2) * sqrt(2). Thus......Login to view full explanation

登录即可查看完整答案

我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。

更多留学生实用工具

加入我们,立即解锁 海量真题独家解析,让复习快人一步!