题目
题目

MAT137Y1 LEC 20249: Calculus with Proofs (all lecture sections) Pre-Class Quiz 39 (7.7, 7.8 and 7.11)

多项填空题

Let a<b<ca<b<c. The functions f(x)f(x) and g(x)g(x) obey 1) ∫baf(x)dx=−3\displaystyle \int_{b}^{a} f(x) dx = -3 2) ∫bcf(x)dx=4\displaystyle \int_{b}^{c} f(x) dx = 4 3) ∫abg(x)dx=6\displaystyle \int_{a}^{b} g(x) dx = 6 4) ∫bcg(x)dx=2\displaystyle \int_{b}^{c} g(x) dx = 2 Find the following integrals a) ∫ab3f(x)dx=\displaystyle \int_{a}^{b} 3f(x) dx = [Fill in the blank], b) ∫aaf(x)⋅g(x)dx=\displaystyle \int_{a}^{a} f(x) \cdot g(x) dx = [Fill in the blank], c) ∫ac[3f(x)−2g(x)]dx=\displaystyle \int_{a}^{c} [3f(x)-2g(x)]dx = [Fill in the blank], d) ∫ab[2f(x)+3g(x)]dx=\displaystyle \int_{a}^{b} [2f(x)+3g(x)]dx = [Fill in the blank],

查看解析

查看解析

标准答案
Please login to view
思路分析
The problem gives you definite integrals of f and g over adjacent intervals and asks you to fill in four blanks with the resulting numbers. First, restating the known pieces helps anchor the calculations: - For f: ∫ from b to a of f(x) dx = -3, which implies ∫ from a to b of f(x) dx = 3 because reversing the limits changes the sign. - ......Login to view full explanation

登录即可查看完整答案

我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。

更多留学生实用工具

加入我们,立即解锁 海量真题独家解析,让复习快人一步!