题目
题目
单项选择题

Question at position 2 The function f(x,y)=13x3+12y2+xy−6x+3 has a relative minimum at(-2, 2)(-3, 3)(2, -2)(3, -3)(2, 2)

选项
A.(-2, 2)
B.(-3, 3)
C.(2, -2)
D.(3, -3)
E.(2, 2)
查看解析

查看解析

标准答案
Please login to view
思路分析
We need to analyze the function f(x,y) = 13x^3 + 12y^2 + xy − 6x + 3 and locate potential relative minima by examining critical points. First, compute the partial derivatives: f_x = ∂f/∂x = 39x^2 + y − 6, f_y = ∂f/∂y = 24y + x. Critical points occur where both partial derivatives are zero: 1) 39x^2 + y − 6 = 0 2) 2......Login to view full explanation

登录即可查看完整答案

我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。

类似问题

更多留学生实用工具

加入我们,立即解锁 海量真题独家解析,让复习快人一步!