题目
题目
单项选择题

Question at position 2 The function f(x,y)=13x3+12y2+xy−6x+3f\left(x,y\right)=\frac{1}{3}x^3+\frac{1}{2}y^2+xy-6x+3 has a relative minimum at(-2, 2)(2, -2)(-3, 3)(2, 2)(3, -3)

选项
A.(-2, 2)
B.(2, -2)
C.(-3, 3)
D.(2, 2)
E.(3, -3)
查看解析

查看解析

标准答案
Please login to view
思路分析
Start by clearly identifying what the problem asks: locate relative minima of f(x,y) = (1/3)x^3 + (1/2)y^2 + xy − 6x + 3 and evaluate each given option as a potential critical point. Option 1: (-2, 2). Compute the partial derivatives: f_x = x^2 + y − 6 and f_y = y + x. At (-2, 2): f_x = (-2)^2 + 2 − 6 = 4 + 2 − 6 = 0, and f_y = 2 + (-2) = 0, so this is a critical point. Next, examine the Hessian: f_xx = 2x......Login to view full explanation

登录即可查看完整答案

我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。

类似问题

更多留学生实用工具

加入我们,立即解锁 海量真题独家解析,让复习快人一步!