题目
单项选择题
Assume \(X\) and \(Y\) are two random variables with \(Var(X)=4,\) \(Var(Y)=1,\) and \(Cov(X,Y)=2\). What is \(Cov(2X-1, X-3Y+2) \)?You may find some of the following screenshots from the lecture notes useful.Answer:Answer:-4Cov(2X-1, X-3Y+2) = Cov(2X, X-3Y) = Cov(2X, X) - Cov(2X, 3Y) = 2Var(X) - 6Cov(X, Y) = 2(4) - 6(2) = -4
选项
A.a. -4
B.b. 4
C.c. -56
D.d. 20
查看解析
标准答案
Please login to view
思路分析
We start by restating the problem to keep all given information in view: Var(X) = 4, Var(Y) = 1, Cov(X, Y) = 2. The target is Cov(2X − 1, X − 3Y + 2).
Option a: -4
- This option matches the standard covariance algebra: constants disappear, and Cov(aX + b, cU + dV) behaves linearly in the random variables. Specifically, Cov(2X − 1, X − 3Y + 2) = Cov(2X, X − ......Login to view full explanation登录即可查看完整答案
我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。
更多留学生实用工具
希望你的学习变得更简单
加入我们,立即解锁 海量真题 与 独家解析,让复习快人一步!