题目
题目
单项选择题

Assume \(X\) and \(Y\) are two random variables with \(Var(X)=4,\) \(Var(Y)=1,\) and \(Cov(X,Y)=2\). What is \(Cov(2X-1, X-3Y+2) \)?You may find some of the following screenshots from the lecture notes useful.Answer:Answer:-4Cov(2X-1, X-3Y+2) = Cov(2X, X-3Y) = Cov(2X, X) - Cov(2X, 3Y) = 2Var(X) - 6Cov(X, Y) = 2(4) - 6(2) = -4

选项
A.a. -4
B.b. 4
C.c. -56
D.d. 20
题目图片
查看解析

查看解析

标准答案
Please login to view
思路分析
Let's parse the problem step by step and evaluate each option. Option a. '-4': This is the given result in the worked solution. To see why, use covariance properties: Cov(aX + b, cY + d) = ac Cov(X, Y) when a,b,c,d are constants and you ignore added constants because they do not affect covariance. Here, Cov(2X - 1, X - ......Login to view full explanation

登录即可查看完整答案

我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。

更多留学生实用工具

加入我们,立即解锁 海量真题独家解析,让复习快人一步!