题目
题目
单项选择题

Assume [math: X] and [math: Y] are two random variables with [math: Var(X)=4,] [math: Var(Y)=1,] and [math: Cov(X,Y)=2]. What is [math: Cov(2X−1,X−3Y+2)]Cov(2X-1, X-3Y+2) ?You may find some of the following screenshots from the lecture notes useful.Answer:Answer:-4Cov(2X-1, X-3Y+2) = Cov(2X, X-3Y) = Cov(2X, X) - Cov(2X, 3Y) = 2Var(X) - 6Cov(X, Y) = 2(4) - 6(2) = -4

选项
A.a. -4
B.b. 4
C.c. -56
D.d. 20
查看解析

查看解析

标准答案
Please login to view
思路分析
Let's examine the given covariance problem step by step and evaluate each candidate. Option a: -4. This matches the standard expansion: Cov(2X−1, X−3Y+2) = Cov(2X, X−3Y) by linearity (constants drop out in covariance), and Cov(2X, X−3Y) = Cov(2X, X) − Cov(2X, 3Y) = 2Var(X) − 6Cov(X,Y). Substituting Var(X)=4 and Cov(X,Y)=......Login to view full explanation

登录即可查看完整答案

我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。

更多留学生实用工具

加入我们,立即解锁 海量真题独家解析,让复习快人一步!