้ข็ฎ
ๅ้กน้ๆฉ้ข
Consider the following model for the mean and volatility of asset returns ๐ ๐ก : ๐ ๐ก = ๐ฝ โ ๐ก + ๐ ๐ก ๐ ๐ก = โ ๐ก ๐ข ๐ก โ ๐ก = ๐ * + ๐ 1 * ๐ ๐ก โ 1 2 + ๐ 2 * ๐ ๐ก โ 2 2 + ๐ 3 * ๐ ๐ก โ 3 2 ๐ผ ๐ก โ 1 ( ๐ข ๐ก ) = 0 ๐ผ ๐ก โ 1 ( ๐ข ๐ก 2 ) = 1 What is the conditional expectation ๐ผ ๐ก โ 1 ( ๐ ๐ก ) ?
้้กน
A.๐ผ
๐ก
โ
1
(
๐
๐ก
)
=
โ
๐ก
๐ข
๐ก
2
B.๐ผ
๐ก
โ
1
(
๐
๐ก
)
=
๐ฝ
๐
๐ก
โ
1
C.๐ผ
๐ก
โ
1
(
๐
๐ก
)
=
0
D.๐ผ
๐ก
โ
1
(
๐
๐ก
)
=
๐ฝ
E.๐ผ
๐ก
โ
1
(
๐
๐ก
)
=
๐ฝ
โ
๐ก
ๆฅ็่งฃๆ
ๆ ๅ็ญๆก
Please login to view
ๆ่ทฏๅๆ
We start by restating the question in our own words to ensure understanding: we have a model where the return r_t is driven by a latent volatility term h_t and a noise term ฮต_t, with r_t = ฮฒ h_t + ฮต_t. The question asks for the conditional expectation E_{t-1}(r_t) given information up to time t-1. The key is to separate the predictable part from the innovation part.
Option 1: E_{t-1}(r_t) = h_t u_t^2. This form suggests the expectation would depend on h_t and a squared innovation term u_t^2, but by construction ฮต_t is the shock at time t and, conditional on information up to t-1, its mean ......Login to view full explanation็ปๅฝๅณๅฏๆฅ็ๅฎๆด็ญๆก
ๆไปฌๆถๅฝไบๅ จ็่ถ 50000้่่ฏๅ้ขไธ่ฏฆ็ป่งฃๆ,็ฐๅจ็ปๅฝ,็ซๅณ่ทๅพ็ญๆกใ
็ฑปไผผ้ฎ้ข
If the conditional variance for tomorrow's return is 0.0004, ๐ ๐ ๐ ๐ก ( ๐ ๐ก + 1 ) = ( 0.02 ) 2 = 0.0004 , then the conditional expectation for tomorrow's return is 2% or -2%.
Consider the following model for the mean of asset returns rt: rt=ฮฑ+ฮฒztโ1+ฮตt where ztโ1 is a predictor of the returns. The model for the volatility is ฮตt= โ ht ut ht=ฮผ*+ฯ * 1 ฮต 2 tโ1 +ฯ * 2 ฮต 2 tโ2 +ฯ * 3 ฮต 2 tโ3 ๐ผtโ1(ut)=0 ๐ผtโ1(u 2 t )=1 What is the conditional expected value of the returns ๐ผtโ1(rt)? Choose the best answer below.
Consider the following model for the mean and volatility of asset returns ๐ ๐ก : ๐ ๐ก = ๐ฝ โ ๐ก + ๐ ๐ก ๐ ๐ก = โ ๐ก ๐ข ๐ก โ ๐ก = ๐ * + ๐ 1 * ๐ ๐ก โ 1 2 + ๐ 2 * ๐ ๐ก โ 2 2 + ๐ 3 * ๐ ๐ก โ 3 2 ๐ผ ๐ก โ 1 ( ๐ข ๐ก ) = 0 ๐ผ ๐ก โ 1 ( ๐ข ๐ก 2 ) = 1 What is the conditional expectation ๐ผ ๐ก โ 1 ( ๐ ๐ก ) ?
Consider the following model for the mean of asset returns ๐ ๐ก : ๐ ๐ก = ๐ผ + ๐ฝ ๐ง ๐ก โ 1 + ๐ ๐ก where ๐ง ๐ก โ 1 is a predictor of the returns. The model for the volatility is ๐ ๐ก = โ ๐ก ๐ข ๐ก โ ๐ก = ๐ * + ๐ 1 * ๐ ๐ก โ 1 2 + ๐ 2 * ๐ ๐ก โ 2 2 + ๐ 3 * ๐ ๐ก โ 3 2 ๐ผ ๐ก โ 1 ( ๐ข ๐ก ) = 0 ๐ผ ๐ก โ 1 ( ๐ข ๐ก 2 ) = 1 What is the conditional expected value of the returns ๐ผ ๐ก โ 1 ( ๐ ๐ก ) ? Choose the best answer below.
ๆดๅค็ๅญฆ็ๅฎ็จๅทฅๅ ท
ๅธๆไฝ ็ๅญฆไน ๅๅพๆด็ฎๅ
ๅ ๅ ฅๆไปฌ๏ผ็ซๅณ่งฃ้ ๆตท้็้ข ไธ ็ฌๅฎถ่งฃๆ๏ผ่ฎฉๅคไน ๅฟซไบบไธๆญฅ๏ผ