้ข˜็›ฎ
้ข˜็›ฎ
ๅ•้กน้€‰ๆ‹ฉ้ข˜

Consider the following model for the mean and volatility of asset returns ๐‘Ÿ ๐‘ก : ๐‘Ÿ ๐‘ก = ๐›ฝ โ„Ž ๐‘ก + ๐œ€ ๐‘ก ๐œ€ ๐‘ก = โ„Ž ๐‘ก ๐‘ข ๐‘ก โ„Ž ๐‘ก = ๐œ‡ * + ๐œ™ 1 * ๐œ€ ๐‘ก โˆ’ 1 2 + ๐œ™ 2 * ๐œ€ ๐‘ก โˆ’ 2 2 + ๐œ™ 3 * ๐œ€ ๐‘ก โˆ’ 3 2 ๐”ผ ๐‘ก โˆ’ 1 ( ๐‘ข ๐‘ก ) = 0 ๐”ผ ๐‘ก โˆ’ 1 ( ๐‘ข ๐‘ก 2 ) = 1 What is the conditional expectation ๐”ผ ๐‘ก โˆ’ 1 ( ๐‘Ÿ ๐‘ก ) ?

้€‰้กน
A.๐”ผ ๐‘ก โˆ’ 1 ( ๐‘Ÿ ๐‘ก ) = โ„Ž ๐‘ก ๐‘ข ๐‘ก 2
B.๐”ผ ๐‘ก โˆ’ 1 ( ๐‘Ÿ ๐‘ก ) = ๐›ฝ ๐‘Ÿ ๐‘ก โˆ’ 1
C.๐”ผ ๐‘ก โˆ’ 1 ( ๐‘Ÿ ๐‘ก ) = 0
D.๐”ผ ๐‘ก โˆ’ 1 ( ๐‘Ÿ ๐‘ก ) = ๐›ฝ
E.๐”ผ ๐‘ก โˆ’ 1 ( ๐‘Ÿ ๐‘ก ) = ๐›ฝ โ„Ž ๐‘ก
ๆŸฅ็œ‹่งฃๆž

ๆŸฅ็œ‹่งฃๆž

ๆ ‡ๅ‡†็ญ”ๆกˆ
Please login to view
ๆ€่ทฏๅˆ†ๆž
We start by restating the question in our own words to ensure understanding: we have a model where the return r_t is driven by a latent volatility term h_t and a noise term ฮต_t, with r_t = ฮฒ h_t + ฮต_t. The question asks for the conditional expectation E_{t-1}(r_t) given information up to time t-1. The key is to separate the predictable part from the innovation part. Option 1: E_{t-1}(r_t) = h_t u_t^2. This form suggests the expectation would depend on h_t and a squared innovation term u_t^2, but by construction ฮต_t is the shock at time t and, conditional on information up to t-1, its mean ......Login to view full explanation

็™ปๅฝ•ๅณๅฏๆŸฅ็œ‹ๅฎŒๆ•ด็ญ”ๆกˆ

ๆˆ‘ไปฌๆ”ถๅฝ•ไบ†ๅ…จ็ƒ่ถ…50000้“่€ƒ่ฏ•ๅŽŸ้ข˜ไธŽ่ฏฆ็ป†่งฃๆž,็Žฐๅœจ็™ปๅฝ•,็ซ‹ๅณ่Žทๅพ—็ญ”ๆกˆใ€‚

็ฑปไผผ้—ฎ้ข˜

If the conditional variance for tomorrow's return is 0.0004, ๐‘‰ ๐‘Ž ๐‘… ๐‘ก ( ๐‘… ๐‘ก + 1 ) = ( 0.02 ) 2 = 0.0004 , then the conditional expectation for tomorrow's return is 2% or -2%.

Consider the following model for the mean of asset returns rt: rt=ฮฑ+ฮฒztโˆ’1+ฮตt where ztโˆ’1 is a predictor of the returns. The model for the volatility is ฮตt= โˆš ht ut ht=ฮผ*+ฯ• * 1 ฮต 2 tโˆ’1 +ฯ• * 2 ฮต 2 tโˆ’2 +ฯ• * 3 ฮต 2 tโˆ’3 ๐”ผtโˆ’1(ut)=0 ๐”ผtโˆ’1(u 2 t )=1 What is the conditional expected value of the returns ๐”ผtโˆ’1(rt)? Choose the best answer below.

Consider the following model for the mean and volatility of asset returns ๐‘Ÿ ๐‘ก : ๐‘Ÿ ๐‘ก = ๐›ฝ โ„Ž ๐‘ก + ๐œ€ ๐‘ก ๐œ€ ๐‘ก = โ„Ž ๐‘ก ๐‘ข ๐‘ก โ„Ž ๐‘ก = ๐œ‡ * + ๐œ™ 1 * ๐œ€ ๐‘ก โˆ’ 1 2 + ๐œ™ 2 * ๐œ€ ๐‘ก โˆ’ 2 2 + ๐œ™ 3 * ๐œ€ ๐‘ก โˆ’ 3 2 ๐”ผ ๐‘ก โˆ’ 1 ( ๐‘ข ๐‘ก ) = 0 ๐”ผ ๐‘ก โˆ’ 1 ( ๐‘ข ๐‘ก 2 ) = 1 What is the conditional expectation ๐”ผ ๐‘ก โˆ’ 1 ( ๐‘Ÿ ๐‘ก ) ?

Consider the following model for the mean of asset returns ๐‘Ÿ ๐‘ก : ๐‘Ÿ ๐‘ก = ๐›ผ + ๐›ฝ ๐‘ง ๐‘ก โˆ’ 1 + ๐œ€ ๐‘ก where ๐‘ง ๐‘ก โˆ’ 1 is a predictor of the returns. The model for the volatility is ๐œ€ ๐‘ก = โ„Ž ๐‘ก ๐‘ข ๐‘ก โ„Ž ๐‘ก = ๐œ‡ * + ๐œ™ 1 * ๐œ€ ๐‘ก โˆ’ 1 2 + ๐œ™ 2 * ๐œ€ ๐‘ก โˆ’ 2 2 + ๐œ™ 3 * ๐œ€ ๐‘ก โˆ’ 3 2 ๐”ผ ๐‘ก โˆ’ 1 ( ๐‘ข ๐‘ก ) = 0 ๐”ผ ๐‘ก โˆ’ 1 ( ๐‘ข ๐‘ก 2 ) = 1 What is the conditional expected value of the returns ๐”ผ ๐‘ก โˆ’ 1 ( ๐‘Ÿ ๐‘ก ) ? Choose the best answer below.

ๆ›ดๅคš็•™ๅญฆ็”Ÿๅฎž็”จๅทฅๅ…ท

ๅŠ ๅ…ฅๆˆ‘ไปฌ๏ผŒ็ซ‹ๅณ่งฃ้” ๆตท้‡็œŸ้ข˜ ไธŽ ็‹ฌๅฎถ่งฃๆž๏ผŒ่ฎฉๅคไน ๅฟซไบบไธ€ๆญฅ๏ผ