é¢ç®
BU.232.630.W4.SP25 sample_quiz_3
å项鿩é¢
Consider the following model for the mean of asset returns ð ð¡ : ð ð¡ = ðŒ + ðœ ð§ ð¡ â 1 + ð ð¡ where ð§ ð¡ â 1 is a predictor of the returns. The model for the volatility is ð ð¡ = â ð¡ ð¢ ð¡ â ð¡ = ð * + ð 1 * ð ð¡ â 1 2 + ð 2 * ð ð¡ â 2 2 + ð 3 * ð ð¡ â 3 2 ðŒ ð¡ â 1 ( ð¢ ð¡ ) = 0 ðŒ ð¡ â 1 ( ð¢ ð¡ 2 ) = 1 What is the conditional expected value of the returns ðŒ ð¡ â 1 ( ð ð¡ ) ? Choose the best answer below.
é项
A.ðŒ
ð¡
â
1
(
ð
ð¡
)
=
ðŒ
1
â
ðœ
B.ðŒ
ð¡
â
1
(
ð
ð¡
)
=
ðœ
ð
ð¡
â
1
+
ðŒ
C.ðŒ
ð¡
â
1
(
ð
ð¡
)
=
ðŒ
+
ðœ
ð§
ð¡
â
1
D.ðŒ
ð¡
â
1
(
ð
ð¡
)
=
ðœ
ð§
ð¡
â
1
E.ðŒ
ð¡
â
1
(
ð
ð¡
)
=
ð§
ð¡
â
1
æ¥çè§£æ
æ åçæ¡
Please login to view
æè·¯åæ
The question presents a model for asset returns: r_t = α + β z_{tâ1} + ε_t, where z_{tâ1} is a predictor of the returns and ε_t is the error term with mean zero given information up to time tâ1. The task is to identify the conditional expected value E_{tâ1}(r_t).
Option 1: E_{tâ1}(r_t) = α + 1 â β. This form is incorrect. It treats the expectation as a constant offset of α and subtracts β, but it ignores the actual predictor z_{tâ1} and its coefficient, which are essential to the conditional mean. There is no basis in the model for adding a constant 1 minus β;......Login to view full explanationç»åœå³å¯æ¥ç宿Žçæ¡
æä»¬æ¶åœäºå šçè¶ 50000éèè¯åé¢äžè¯Šç»è§£æ,ç°åšç»åœ,ç«å³è·åŸçæ¡ã
类䌌é®é¢
If the conditional variance for tomorrow's return is 0.0004, ð ð ð ð¡ ( ð ð¡ + 1 ) = ( 0.02 ) 2 = 0.0004 , then the conditional expectation for tomorrow's return is 2% or -2%.
Consider the following model for the mean of asset returns rt: rt=α+βztâ1+εt where ztâ1 is a predictor of the returns. The model for the volatility is εt= â ht ut ht=ÎŒ*+Ï * 1 ε 2 tâ1 +Ï * 2 ε 2 tâ2 +Ï * 3 ε 2 tâ3 ðŒtâ1(ut)=0 ðŒtâ1(u 2 t )=1 What is the conditional expected value of the returns ðŒtâ1(rt)? Choose the best answer below.
Consider the following model for the mean and volatility of asset returns ð ð¡ : ð ð¡ = ðœ â ð¡ + ð ð¡ ð ð¡ = â ð¡ ð¢ ð¡ â ð¡ = ð * + ð 1 * ð ð¡ â 1 2 + ð 2 * ð ð¡ â 2 2 + ð 3 * ð ð¡ â 3 2 ðŒ ð¡ â 1 ( ð¢ ð¡ ) = 0 ðŒ ð¡ â 1 ( ð¢ ð¡ 2 ) = 1 What is the conditional expectation ðŒ ð¡ â 1 ( ð ð¡ ) ?
Consider the following model for the mean and volatility of asset returns ð ð¡ : ð ð¡ = ðœ â ð¡ + ð ð¡ ð ð¡ = â ð¡ ð¢ ð¡ â ð¡ = ð * + ð 1 * ð ð¡ â 1 2 + ð 2 * ð ð¡ â 2 2 + ð 3 * ð ð¡ â 3 2 ðŒ ð¡ â 1 ( ð¢ ð¡ ) = 0 ðŒ ð¡ â 1 ( ð¢ ð¡ 2 ) = 1 What is the conditional expectation ðŒ ð¡ â 1 ( ð ð¡ ) ?
æŽå€çåŠçå®çšå·¥å ·
åžæäœ çåŠä¹ ååŸæŽç®å
å å ¥æä»¬ïŒç«å³è§£é æµ·éçé¢ äž ç¬å®¶è§£æïŒè®©å€ä¹ å¿«äººäžæ¥ïŒ