้ข˜็›ฎ
้ข˜็›ฎ

SMAT011 Weekly Quiz 3 |LA003

ๅ•้กน้€‰ๆ‹ฉ้ข˜

The polar form of ย  ๐‘ง = โˆ’ 6 7 + 3 2 7 ๐‘– is: Hint: ๐‘ง = ๐‘Ž + ๐‘ ๐‘– = ๐‘Ÿ ( cos โก ๐œƒ + ๐‘– sin โก ๐œƒ ) whereย  ๐‘Ÿ = ๐‘Ž 2 + ๐‘ 2 ย  and ย  ๐œƒ = tan โˆ’ 1 โก ๐‘ ๐‘Ž . ย ย ย ย ย ย ย ย  Also, don't forget to plot the complex number on the Argand diagram.

ๆŸฅ็œ‹่งฃๆž

ๆŸฅ็œ‹่งฃๆž

ๆ ‡ๅ‡†็ญ”ๆกˆ
Please login to view
ๆ€่ทฏๅˆ†ๆž
The question as provided asks for the polar form of z, with a hint that z = a + b i = r (cos ฮธ + i sin ฮธ), where r = sqrt(a^2 + b^2) and ฮธ = arctan(b/a). It also mentions plotting the point on the Argand diagram. However, there is a significant formatting problem in the input: the complex number z is written as "โˆ’ 6 7 + 3 2 7 i" which is not a standard or parseable representation of a + bi, and the answer options section is empty, making it impossible to identify what choices (if any) we should evaluate. First, a general step-by-step approach to converting a complex number to pola......Login to view full explanation

็™ปๅฝ•ๅณๅฏๆŸฅ็œ‹ๅฎŒๆ•ด็ญ”ๆกˆ

ๆˆ‘ไปฌๆ”ถๅฝ•ไบ†ๅ…จ็ƒ่ถ…50000้“่€ƒ่ฏ•ๅŽŸ้ข˜ไธŽ่ฏฆ็ป†่งฃๆž,็Žฐๅœจ็™ปๅฝ•,็ซ‹ๅณ่Žทๅพ—็ญ”ๆกˆใ€‚

็ฑปไผผ้—ฎ้ข˜

( 6 โˆ’ 6 ๐‘– โˆ’ 9 3 โˆ’ 27 ๐‘– ) 256 = _ _ _ _ _ _ _ _ _ _ ย  Hints: Convert the complex numbers to polar form. Ifย ย  ๐‘ง = ๐‘Ÿ ( cos โก ๐œƒ + ๐‘– sin โก ๐œƒ ) then ย  ๐‘ง ๐‘› = ๐‘Ÿ ๐‘› ( cos โก ๐‘› ๐œƒ + ๐‘– sin โก ๐‘› ๐œƒ ) . If ๐‘ง 1 = ๐‘Ÿ 1 ( cos โก ๐œƒ 1 + ๐‘– sin โก ๐œƒ 1 ) ย  and ย  ๐‘ง 2 = ๐‘Ÿ 2 ( cos โก ๐œƒ 2 + ๐‘– sin โก ๐œƒ 2 ) then: ย  ย  ย ย ย  ย  ๐‘ง 1 ๐‘ง 2 = ๐‘Ÿ 1 ๐‘Ÿ 2 [ cos โก ( ๐œƒ 1 + ๐œƒ 2 ) + ๐‘– sin โก ( ๐œƒ 1 + ๐œƒ 2 ) ] ย  and ย  ๐‘ง 1 ๐‘ง 2 = ๐‘Ÿ 1 ๐‘Ÿ 2 [ cos โก ( ๐œƒ 1 โˆ’ ๐œƒ 2 ) + ๐‘– sin โก ( ๐œƒ 1 โˆ’ ๐œƒ 2 ) ] .

Given four complex numbers ย  ๐‘ง 1 = 2 + 3 ๐‘– , ๐‘ง 2 = โˆ’ 7 โˆ’ 5 ๐‘– , ๐‘ง 3 = โˆ’ 9 + 7 ๐‘– , ๐‘ง 4 = 2 + 5 ๐‘– . Calculate ย  | ๐‘ง 3 ยฏ ๐‘ง 1 + ๐‘ง 2 ๐‘ง 4 | . Formulae: Ifย  ๐‘ง = ๐‘Ž + ๐‘ ๐‘– ย  thenย  ๐‘ง ยฏ = ๐‘Ž โˆ’ ๐‘ ๐‘– ย  and ย  | ๐‘ง | = ๐‘Ž 2 + ๐‘ 2 . ๐‘Ž + ๐‘ ๐‘– ๐‘ + ๐‘‘ ๐‘– = ( ๐‘Ž + ๐‘ ๐‘– ) ( ๐‘ โˆ’ ๐‘‘ ๐‘– ) ( ๐‘ + ๐‘‘ ๐‘– ) ( ๐‘ โˆ’ ๐‘‘ ๐‘– ) = โ‹ฏ

The figure shows the Argand diagram together with the complex number \(z\). If \(d=13\) and the imaginary part of \(z\) is \(-5\), find \(z\).

Find the standard form of the complex number with modulus [math]2 and argument [math]\dfrac {\pi }{5}. (Correct the answer to 2 decimal places.)

ๆ›ดๅคš็•™ๅญฆ็”Ÿๅฎž็”จๅทฅๅ…ท

ๅŠ ๅ…ฅๆˆ‘ไปฌ๏ผŒ็ซ‹ๅณ่งฃ้” ๆตท้‡็œŸ้ข˜ ไธŽ ็‹ฌๅฎถ่งฃๆž๏ผŒ่ฎฉๅคไน ๅฟซไบบไธ€ๆญฅ๏ผ