题目
题目

SMAT011 Weekly Quiz 3 |LA003

单项选择题

Given four complex numbers   𝑧 1 = 2 + 3 𝑖 , 𝑧 2 = − 7 − 5 𝑖 , 𝑧 3 = − 9 + 7 𝑖 , 𝑧 4 = 2 + 5 𝑖 . Calculate   | 𝑧 3 ¯ 𝑧 1 + 𝑧 2 𝑧 4 | . Formulae: If  𝑧 = 𝑎 + 𝑏 𝑖   then  𝑧 ¯ = 𝑎 − 𝑏 𝑖   and   | 𝑧 | = 𝑎 2 + 𝑏 2 . 𝑎 + 𝑏 𝑖 𝑐 + 𝑑 𝑖 = ( 𝑎 + 𝑏 𝑖 ) ( 𝑐 − 𝑑 𝑖 ) ( 𝑐 + 𝑑 𝑖 ) ( 𝑐 − 𝑑 𝑖 ) = ⋯

查看解析

查看解析

标准答案
Please login to view
思路分析
The given data presents a complex-number arithmetic problem, but there are no answer choices provided to evaluate. I will first outline what is being asked and then proceed with the computation step by step so you can see how the quantity is formed, even in the absence of multiple-choice options. What is being asked: - We are given four complex numbers: z1 = 2 + 3i, z2 = -7 - 5i, z3 = -9 + 7i, z4 = 2 + 5i. - We need to compute the abs......Login to view full explanation

登圕即可查看完敎答案

我们收圕了党球超50000道考试原题䞎诊细解析,现圚登圕,立即获埗答案。

类䌌问题

( 6 − 6 𝑖 − 9 3 − 27 𝑖 ) 256 = _ _ _ _ _ _ _ _ _ _   Hints: Convert the complex numbers to polar form. If   𝑧 = 𝑟 ( cos ⁡ 𝜃 + 𝑖 sin ⁡ 𝜃 ) then   𝑧 𝑛 = 𝑟 𝑛 ( cos ⁡ 𝑛 𝜃 + 𝑖 sin ⁡ 𝑛 𝜃 ) . If 𝑧 1 = 𝑟 1 ( cos ⁡ 𝜃 1 + 𝑖 sin ⁡ 𝜃 1 )   and   𝑧 2 = 𝑟 2 ( cos ⁡ 𝜃 2 + 𝑖 sin ⁡ 𝜃 2 ) then:           𝑧 1 𝑧 2 = 𝑟 1 𝑟 2 [ cos ⁡ ( 𝜃 1 + 𝜃 2 ) + 𝑖 sin ⁡ ( 𝜃 1 + 𝜃 2 ) ]   and   𝑧 1 𝑧 2 = 𝑟 1 𝑟 2 [ cos ⁡ ( 𝜃 1 − 𝜃 2 ) + 𝑖 sin ⁡ ( 𝜃 1 − 𝜃 2 ) ] .

The polar form of   𝑧 = − 6 7 + 3 2 7 𝑖 is: Hint: 𝑧 = 𝑎 + 𝑏 𝑖 = 𝑟 ( cos ⁡ 𝜃 + 𝑖 sin ⁡ 𝜃 ) where  𝑟 = 𝑎 2 + 𝑏 2   and   𝜃 = tan − 1 ⁡ 𝑏 𝑎 .          Also, don't forget to plot the complex number on the Argand diagram.

The figure shows the Argand diagram together with the complex number \(z\). If \(d=13\) and the imaginary part of \(z\) is \(-5\), find \(z\).

Find the standard form of the complex number with modulus [math]2 and argument [math]\dfrac {\pi }{5}. (Correct the answer to 2 decimal places.)

曎倚留孊生实甚工具

加入我们立即解锁 海量真题 侎 独家解析让倍习快人䞀步