题目
多项填空题
<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>The differentiable functions </mtext><mi>f</mi><mtext> and </mtext><mi>g</mi><mtext> are defined for all real numbers </mtext><mi>x</mi><mo>.</mo><mtext> Values of </mtext><mi>f</mi><mo>,</mo><msup><mi>f</mi><mo>′</mo></msup><mo>,</mo><mi>g</mi><mo>,</mo><mtext> and </mtext><msup><mi>g</mi><mo>′</mo></msup><mtext> for various values of </mtext><mi>x</mi><mtext> are given in the table.</mtext></math>\text{The differentiable functions } f \text{ and } g \text{ are defined for all real numbers } x. \text{ Values of } f, f', g, \text{ and } g' \text{ for various values of } x \text{ are given in the table.} <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Suppose that</mtext><mtext> </mtext><mi>h</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mi>f</mi><mo stretchy="false">(</mo><mi>g</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mtext> </mtext><mtext>and</mtext><mtext> </mtext><mi>H</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mi>f</mi><mo stretchy="false">(</mo><mi>g</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>.</mo><mtext> </mtext><mtext>Determine the following quantities.</mtext></math>\text{Suppose that} \ h(x)=f(g(x)) \ \text{and} \ H(x)=f(g(x)). \ \text{Determine the following quantities.} (a) <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>h</mi><mo>′</mo></msup><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo><mo>=</mo></math>h'(1)=[Fill in the blank], (b) <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>H</mi><mo>′</mo></msup><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo><mo>=</mo></math>H'(1)=[Fill in the blank],
查看解析
标准答案
Please login to view
思路分析
This question asks us to determine derivatives at x = 1 for composite functions built from f and g, namely h(x) = f(g(x)) and H(x) = f(g(x)).
First, recall the chain rule: if h(x) = f(g(x)), then h'(x) = f'(g(x)) · g'(x). To evaluate h'(1), we need the values of g(1), f'(g(1)), and g'(1) from the given table. Similarly, since H is defined identically as H(x) = f(g(x)), we h......Login to view full explanation登录即可查看完整答案
我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。
更多留学生实用工具
希望你的学习变得更简单
加入我们,立即解锁 海量真题 与 独家解析,让复习快人一步!