题目
题目
单项选择题

Question11 Apple stock currently sells for $40. The strike price on a call option with 6 months until expiration is $45. The continuously compounded risk-free rate is 4.0% and the Apple’s stock standard deviation is 0.40. Calculate the price of the call option on Apple stock using the Black-Scholes option pricing model. (Note: Use the provided Standard Normal Table to obtain the correct value from the options below. If you use your calculator you will not find any of the values below.) A. $2.65 B. $3.07 C. $5.53 D. $15.37 ResetMaximum marks: 2 Flag question undefined

选项
A.A. $2.65
B.B. $3.07
C.C. $5.53
D.D. $15.37
查看解析

查看解析

标准答案
Please login to view
思路分析
We begin by restating the given data to ensure we’re applying the Black-Scholes formula correctly: S = 40, K = 45, T = 0.5 years, risk-free rate r = 0.04 (continuously compounded), and annual volatility sigma = 0.40. The option is a plain-vanilla call. Key intermediate quantities: - d1 = [ln(S/K) + (r + 0.5*sigma^2)*T] / [sigma*sqrt(T)] - d2 = d1 - sigma*sqrt(T) - The call price C = S*N(d1) - K*e^{-rT}*N(d2), where N() is the standard normal CDF. Step-by-step evaluation of each option: Option A: $2.65 - If we compute the Black-Scholes terms with the given inputs, we first estimate ln(S/K) = ln(40/45) ≈ ln(0.8889) ≈ -0.1173. - The term (r + 0.5*sigma^2)*T = (0.04 + 0.5*(0.40)^2) * 0.5 = (0.04 + 0.5*0.16) * 0.5 = (0.04 + 0.08) * 0.5 = 0.12 * 0.5 = 0.06. - So the numerator for d1 is ≈ -0.1173 + 0.06 = -0.0573. - The denominator is sigma*sqrt(T) = 0.40 *......Login to view full explanation

登录即可查看完整答案

我们收录了全球超50000道考试原题与详细解析,现在登录,立即获得答案。

更多留学生实用工具

加入我们,立即解锁 海量真题独家解析,让复习快人一步!